Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Bernstein Jonasson posted an update 22 days ago

    An efficient process for recycling waste LiMn2O4 cathode material is proposed in this research. This report constitutes low-temperature (NH4)2SO4 calcination mechanisms and water-leaching characteristics of the calcined samples. A calcination temperature range of 420.65-634.12 °C is determined by analysis of the TG-DSC curve under the conditions of heating from 25 to 1000 °C, with a molar ratio of n(2Li + Mn)n(NH4)2SO4 = 11 in air atmosphere. The sample calcined at 600 °C for 45 min when the excess coefficient of the (NH4)2SO4 was 1.1 exhibits optimal water-leaching efficiencies of the Li and Mn elements, which are approximately 100% and 96.73%, respectively. The macro-reaction mechanism of the waste LiMn2O4 cathode material calcined with (NH4)2SO4 is determined as the liquid-solid reaction by analysing the apparent morphologies of the calcined samples and their water-leaching residues under different calcination conditions. Moreover, the micro-reaction mechanism is investigated by analysing the phases of the calcined samples and their water-leaching residues under different calcination conditions. The free high-energy H+ released by the decomposition of the NH4+ generated by the molten (NH4)2SO4 play a key role in the entire calcination process. The spinel structure of the LiMn2O4 is broken and Li+ is released owing to the H+ bombarding the MnO bonds. Finally, the LiMn2O4 is converted into soluble sulphate salts, such as Li2Mn2(SO4)3 and MnSO4. Cables and wires have a widespread use due to their application in electric power and data transmission. Since they consist of a conductive core (Cu or Al) and an insulating layer (polymer), they can be brought back to life after disposal through recycling in the form of secondary raw materials such as copper, aluminium and/or polymer. The aim of this paper is to research the possibilities of electrostatic separation use for separating aluminium left in residue fraction after the process of recycling Al waste electric cables, as well as to determine the influence of operating parameters and the optimal separation conditions. Waste fraction characterisation has determined that aluminium is mainly found in small-size particles ( less then 2 mm) with the mass fraction higher than 60%. During the research planning the central composite design was used and three operating variables of an electrostatic separator were tested roll speed, voltage and separation splitter position. Results have shown that it is possible to obtain a concentrate with the Al mass fraction of 97.86% at 91.20% recovery. It has been shown that the splitter position has the most significant influence on the grade of concentrate and recovery. It has also been shown that the roll speed individually and the interaction of the roll speed and splitter position have a significant influence on the grade of concentrate. HYPOTHESIS The superhydrophobic lotus leaf has dual-scale surface structures, that is, nano-bumps on micro-mountains. Large hydrophilic particles, due to its high surface energy and weight, have high affility to substrates and tend to precipitate at the bottom of coating films. Small hydrophobic particles, due to its low surface energy and weight, tends to sit on the top of coating films and form porous structures. buy LJH685 To mimic the lotus leaf surface, it may be possible to develop dual-sized particle films, in which small particles are decorated on large particles. EXPERIMENTS A one-step spin coating of a mixture of dual-sized silica particles (55/200 nm) was used. Epoxy resin was added to improve the adhesion of particle films. The single-sized and dual-sized particle films were compared. The mechanical robustness of particle films was tested by tape peeling and droplet impact. FINDINGS The novel combination of hydrophobic silica (55 nm) and hydrophilic silica (200 nm) is essential in creating the hierarchical structures. By combining the strong adhesion of hydrophilic silica (bottom of coating film) to polymer substrates and porous structures of hydrophobic silica (top of coating film), we first time report a one-step and versatile approach to create uniform, transparent, robust, and superhydrophobic surface. Crown All rights reserved.Full visible spectrum photonic droplets and consequent microcapsules with nano-in-micro structure were prepared through microfluidic technique. Photo-curable resin and suspension of monodispersed soft nanogels were used as shell and core of the microcapsules, respectively. Upon UV irradiation, the droplets can be subsequently transformed into photonic microcapsules with an ultrathin polymeric shell. The shell thickness of the photonic microcapsules was found to be approximately 700 nm. Due to the ultrathin shell and soft core, the photonic microcapsules with nano-in-micro structure display dramatic changes both in shapes and photonic property under the impact of osmosis effect or temperature stimulus. Typically, the shell and core parts of nano-in-micro structure could respectively undergo a size expansion/even rupture and a size decrease/buckling under hypotonic and hypertonic condition. Correspondingly, the peak value of the reflection spectra of the microcapsules showed a redshift and blue shift, respectively. The mechanism to the structure and optical properties variation involves the osmotic pressure induced the volume-fraction change of the nanogel-based photonic dispersion and the shell buckling of the core/shell microcapsules. Exploring electrode materials with excellent electrochemical performance is the key to the development of applications in energy storage and conversion. Herein, three-dimensional (3D) vanadium sulfide/carbon nanotubes/reduced graphene oxide (VS4/CNTs/rGO) composite is synthesized by a simple one-step hydrothermal method. VS4 short nanorods cover the both sides of the rGO sheets, and CNTs distribute at the edge of the composite to form a sandwich-like structure, which effectively prevents the accumulation of rGO. Due to the special 3D hierarchical structure, VS4/CNTs/rGO exhibits a large specific surface area and a rich pore structure, and the addition of CNTs and rGO also improves the electrochemical properties of VS4. At 1 A·g-1, VS4/CNTs/rGO exhibits a capacitance of 497 F·g-1 (1374.0 C·g-1) in the voltage range of -1.4 to 1.4 V, which is much higher than those binary materials including CNTs/rGO, VS4/CNTs and VS4/rGO. The VS4/CNTs/rGO symmetric supercapacitor (SSC) device shows a remarkable electrochemical performance in a large potential window up to 2.

Facebook Pagelike Widget

Who’s Online

Profile picture of Gilbert Frisk
Profile picture of King Baird
Profile picture of Mouritzen Buus
Profile picture of Monroe Cheng
Profile picture of Perez Melton
Profile picture of Jefferson Johannsen
Profile picture of Eliasen Have
Profile picture of Tennant Kolding
Profile picture of Vind Meyer
Profile picture of Simon Ewing
Profile picture of Elgaard Klausen
Profile picture of Gallagher Saleh
Profile picture of Mattingly Hougaard
Profile picture of Lindhardt Joyner
Profile picture of Mejer Branch