Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Snow Nixon posted an update 18 days ago

    While Diffusion Monte Carlo (DMC) is in principle an exact stochastic method for ab initio electronic structure calculations, in practice, the fermionic sign problem necessitates the use of the fixed-node approximation and trial wavefunctions with approximate nodes (or zeros). This approximation introduces a variational error in the energy that potentially can be tested and systematically improved. Here, we present a computational method that produces trial wavefunctions with systematically improvable nodes for DMC calculations of periodic solids. These trial wavefunctions are efficiently generated with the configuration interaction using a perturbative selection made iteratively (CIPSI) method. A simple protocol in which both exact and approximate results for finite supercells are used to extrapolate to the thermodynamic limit is introduced. This approach is illustrated in the case of the carbon diamond using Slater-Jastrow trial wavefunctions including up to one million Slater determinants. Fixed-node DMC energies obtained with such large expansions are much improved, and the fixed-node error is found to decrease monotonically and smoothly as a function of the number of determinants in the trial wavefunction, a property opening the way to a better control of this error. The cohesive energy extrapolated to the thermodynamic limit is in close agreement with the estimated experimental value. Interestingly, this is also the case at the single-determinant level, thus, indicating a very good error cancellation in carbon diamond between the bulk and atomic total fixed-node energies when using single-determinant nodes.We report on quantum dynamical simulations of exciton diffusion in an oligo(para-phenylene vinylene) chain segment with 20 repeat units (OPV-20) at finite temperature, complementary to our recent study of the same system at T = 0 K [R. Binder and I. Burghardt, J. Chem. Phys. 152, 204120 (2020)]. Accurate quantum dynamical simulations are performed using the multi-layer multi-configuration time-dependent Hartree method as applied to a site-based Hamiltonian comprising 20 electronic states of Frenkel type and 460 vibrational modes, including site-local quinoid-distortion modes along with site-correlated bond-length alternation (BLA) modes, ring torsional modes, and an explicit harmonic-oscillator bath. see more A first-principles parameterized Frenkel-Holstein type Hamiltonian is employed, which accounts for correlations between the ring torsional modes and the anharmonically coupled BLA coordinates located at the same junction. Thermally induced fluctuations of the torsional modes are described by a stochastic mean-field approach, and their impact on the excitonic motion is characterized in terms of the exciton mean-squared displacement. A normal diffusion regime is observed under periodic boundary conditions, apart from transient localization features. Even though the polaronic exciton species are comparatively weakly bound, exciton diffusion is found to be a coherent-rather than hopping type-process, driven by the fluctuations of the soft torsional modes. Similar to the previous observations for oligothiophenes, the evolution for the most part exhibits a near-adiabatic dynamics of local exciton ground states (LEGSs) that adjust to the local conformational dynamics. However, a second mechanism, involving resonant transitions between neighboring LEGSs, gains importance at higher temperatures.We perform time-resolved ionization spectroscopy measurements of the excited state dynamics of CH2I2 and CH2IBr following photoexcitation in the deep UV. The fragment ions produced by ionization with a vacuum-ultraviolet probe pulse are measured with velocity map imaging, and the momentum resolved yields are compared with trajectory surface hopping calculations of the measurement observable. Together with recent time-resolved photoelectron spectroscopy measurements of the same dynamics, these results provide a detailed picture of the coupled electronic and nuclear dynamics involved. Our measurements highlight the non-adiabatic coupling between electronic states, which leads to notable differences in the dissociation dynamics for the two molecules.We consider the solid or hexatic non-equilibrium phases of an interacting two-dimensional system of active Brownian particles at high density and investigate numerically and theoretically the properties of the velocity distribution function and the associated kinetic temperature. We obtain approximate analytical predictions for the shape of the velocity distribution and find a transition from a Mexican-hat-like to a Gaussian-like distribution as the persistence time of the active force changes from the small to the large persistence regime. Through a detailed numerical and theoretical analysis of the single-particle velocity variance, we report an exact analytical expression for the kinetic temperature of dense spherical self-propelled particles that holds also in the non-equilibrium regimes with large persistence times and discuss its range of validity.The chemical functionalization of graphene nanomaterials allows for the enhancement of their properties for novel functional applications. However, a better understanding of the functionalization process by determining the amount and location of functional groups within individual graphene nanoplatelets remains challenging. In this work, we demonstrate the capability of tip-enhanced Raman spectroscopy (TERS) to investigate the degree and spatial variability of the appearance of disorder in graphitic nanomaterials on the nanoscale with three different levels of nitrogen functionalization. TERS results are in excellent agreement with those of confocal Raman spectroscopy and chemical analysis, determined using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry, of the functionalized materials. This work paves the way for a better understanding of the functionalization of graphene and graphitic nanomaterials at the nano-scale, micro-scale, and macro-scale and the relationship between the techniques and how they relate to the changes in material properties of industrial importance.

Facebook Pagelike Widget

Who’s Online

Profile picture of Thomson Stewart
Profile picture of MacLean Whittaker
Profile picture of Wade Drake
Profile picture of Peters Sykes
Profile picture of Mckenzie Moses
Profile picture of Sullivan Thybo
Profile picture of Friedman Bridges
Profile picture of Gundersen Dean
Profile picture of Holgersen Siegel
Profile picture of Pacheco Stewart
Profile picture of Cheng Womble
Profile picture of Pacheco Mccarthy
Profile picture of Richter Wiese
Profile picture of Langballe Humphries
Profile picture of Gertsen Leslie