-
McQueen Steffensen posted an update 8 days ago
After completing the thio-substitution with Lawesson’s reagent, ethanol was found to be effective in the decomposition of the inherent stoichiometric six-membered-ring byproduct from the Lawesson’s reagent to a highly polarized diethyl thiophosphonate. The treatment significantly simplified the following chromatography purification of the desired thioamide in a small scale preparation. As scaling up the preparation of two pincer-type thioamides, we have successfully developed a convenient process with ethylene glycol to replace ethanol during the workup, including a traditional phase separation, extraction, and recrystallization. The newly developed chromatography-free procedure did not generate P-containing aqueous waste, and only organic effluents were discharged. It is believed that the optimized procedure offers the great opportunity of applying the Lawesson’s reagent for various thio-substitution reactions on a large scale.We herein report a method for the kinetic resolution of racemic 4-hydroxy[2.2]paracyclophane by means of a chiral isothiourea-catalyzed acylation with isobutyric anhydride. This protocol allows for a reasonable synthetically useful s-factor of 20 and provides a novel entry to obtain this interesting planar chiral motive in an enantioenriched manner.The reversible, weak ground-state aggregate formed by dipole-dipole interactions between an electron donor and an electron acceptor is referred to as an electron-donor-acceptor (EDA) complex. Brensocatib Generally, upon light irradiation, the EDA complex turns into the excited state, causing an electron transfer to give radicals and to initiate subsequent reactions. Besides light as an external energy source, reactions involving the participation of EDA complexes are mild, obviating transition metal catalysts or photosensitizers in the majority of cases and are in line with the theme of green chemistry. This review discusses the synthetic reactions concerned with EDA complexes as well as the mechanisms that have been shown over the past five years.A new alternative method for the production of biodiesel from rendered fat, including animal by-product (ABP) Category 1 tallow, was evaluated. The method consists of a conversion phase, based on esterification and transesterification in a single step (at temperature ≥ 200°C, pressure ≥ 70 bar with a retention time ≥ 15 min), using MgO as a catalyst and in the presence of methanol (10-15%), followed by vacuum distillation (at ≥ 150°C, ≤ 10 mbar) of the end-product, biodiesel and the co-product, glycerine. Prions (PrPS c), which are abnormal isoforms of the prion protein, were considered by the applicant to be the most resistant hazard. In accordance with previous EFSA Opinions and current expert evaluation, a reduction in prion infectivity, or detectable PrPS c, of at least 6 log10 should be achieved for the process to be considered equivalent to the processing method laid down in the Regulation (EU) No 142/2011. Published data from an experimental replication of the conversion step of the biodiesel production process under consideration were provided, which showed an at least 6 log10 reduction in detectable PrPS c, by Western blot, in tallow that had been spiked with murine and human prion strains. In addition, it was demonstrated that the presence of methanol does not affect the recovery or detection of PrPS c from a biodiesel substrate. Based on scientific literature, the vacuum distillation step has been shown to be capable of achieving an additional 3 log10 reduction in PrPS c. Therefore, the proposed alternative method is considered to be at least equivalent to the processing method laid down in the legislation for the production of biodiesel from raw materials including Category 1 ABP.Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to revise the Opinion on the essential composition of total diet replacements for weight control (TDRs) regarding the minimum content of linoleic acid (LA) and alpha-linolenic acid (ALA) and the maximum content of magnesium (Mg). Through a comprehensive literature search, human studies were retrieved reporting on LA and ALA concentrations in adipose tissue (AT), on weight loss and gallstone formation following TDR consumption and on diarrhoea after supplemental Mg intake. The distribution of the amount of LA and ALA release from AT during weight loss when consuming TDRs was estimated using statistical simulations. Using the fifth percentile, the coverage of the adequate intake (AI) for both FA was estimated. For the risk of developing diarrhoea when consuming TDRs with an Mg content of 350 mg/day, four cross-over studies using 360-368 mg Mg/day were reviewed. The Panel concludes that (1) there is no need to add LA to TDRs, as the amount released from AT during weight loss when consuming TDRs is sufficient to cover the AI for LA; (2) a minimum of 0.8 g/day ALA is needed in TDRs in order to meet the AI for ALA; (3) the minimum fat content of TDRs of 20 g/day as derived in the Panel’s previous opinion is proposed to be maintained until the availability of further evidence, given the considerable uncertainty as to the amount of fat required for reducing the risk of gallstone formation; and (4) the likelihood that Mg-induced diarrhoea occurs at a severity that may be considered of concern for overweight and obese individuals consuming TDRs is low when the total maximum Mg content in TDRs is 350 mg/day.Optimisation of skeletal mineralisation in childhood is important to reduce childhood fracture and the long-term risk of osteoporosis and fracture in later life. One approach to achieving this is antenatal vitamin D supplementation. The Maternal Vitamin D Osteoporosis Study is a randomised placebo-controlled trial, the aim of which was to assess the effect of antenatal vitamin D supplementation (1000 IU/day cholecalciferol) on offspring bone mass at birth. The study has since extended the follow up into childhood and diversified to assess demographic, lifestyle and genetic factors that determine the biochemical response to antenatal vitamin D supplementation, and to understand the mechanisms underpinning the effects of vitamin D supplementation on offspring bone development, including epigenetics. The demonstration of positive effects of maternal pregnancy vitamin D supplementation on offspring bone development and the delineation of underlying biological mechanisms inform clinical care and future public-health policies.