Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Hegelund Crane posted an update 9 days ago

    Results depicted that adoption attitude is significantly determined by these explanatory variables. The study’s findings provided new evidence for the government to place more emphasis on enhancing kiln owners’ attitudes, social norms, and perceived behavioral control, which would lead towards the adoption of this new technique.The photo-oxidation of arsenite (As(III)) in solution containing Suwannee River fulvic acid (SRFA) under the ultraviolet A (UVA) irradiation (λmax = 365 nm) was studied. In a solution containing 100.0 μg·L-1 As(III) and 10.0 mg·L-1 SRFA at pH 3.0, SRFA induced As(III) photo-oxidation by producing the triplet excited state of SRFA (3SRFA*) and hydroxyl radical(HO˙). Approximately 82% of As(III) oxidation was attributed to HO˙ which depended strongly on HO2˙/O2˙-. The remaining 18% of As(III) oxidation was attributed to the direct reaction between As(III) and 3SRFA*. The photo-oxidation of As(III) was significantly affected by solution pH. Excess SRFA inhibited As(III) photo-oxidation. The addition of a low concentration of ferric ions retarded the photo-oxidation of As(III) due to the poor photo-activity of Fe(III)-SRFA complexes. In contrast, the addition of ferric ions at high concentration greatly accelerated As(III) photo-oxidation because of the high photo-activity of Fe(III)-OH complexes. The fractions of SRFA with different molecular weight showed different oxidizing capacities under UV irradiation which was possibly related to the different contents of phenolic OH groups. The findings have important environmental implications for the photo-transformation behavior of As(III) in natural surface waters containing dissolved organic matter, especially acidic waters.Sewage treatment is an important public service, but it consumes a lot of energy and chemicals in the process of removing wastewater pollutants, which may cause the risk of pollution transfer. To find the corresponding hot issues, this paper took the lead in integrating life cycle assessment (LCA) with life cycle costing (LCC) to evaluate four most typical sewage treatment technologies with more than 85% share in China. It is found that anaerobic/anoxic/oxic (AAO) was the optimal treatment scheme with relatively small potential environmental impact and economic load. The normalized results show that the trends of the four technologies on eleven environmental impact categories were basically the same. Marine aquatic ecotoxicity potential accounted for more than 70% of the overall environmental impact. Contribution analysis indicates that electricity and flocculant consumption were the main processes responsible for the environmental and economic burden. Overall, electricity consumption was the biggest hot spot. Sensitivity analysis verifies that a 10% reduction in electricity could bring high benefits to both the economy and the environment. These findings are expected to provide effective feedback on the operation and improvement of sewage treatment. Graphical abstract.The development of biofilms on modified natural zeolites was investigated with purpose to obtain biocomposites with biodegradation activity towards pesticides MCPA (2-methyl-4-chlorophenoxyacetic acid) and glyphosate (N-(phosphonomethyl)glycine) for potential application in bioaugmentation of polluted agricultural soils. Microbial communities were selected from agricultural pesticide-contaminated soil/water samples and enriched on the basis of their ability to biodegrade the pesticides. In order to enhance affinity of microbial communities to the support material, the natural mineral zeolite was modified by nontoxic environmentally friendly cations (Li+, Na+, K+, NH4+, H+, Mg2+, Ca2+, Fe3+) by methods preserving its structure and characterised using powder XRD, surface area measurement and chemical composition analysis. Kinetics of pesticide degradation by the biocomposites was studied in liquid media. Results showed that according to zeolite modifications, the microbial activity and biodiversity changed. The best biodegradation rate of MCPA and glyphosate reached 0.12-0.13 mg/h with half-life of 16-18 h, which is considerably quicker than observed in natural environment. However, in some cases, biodegradation activity towards pesticides was lost which was connected to unfavourable zeolite modification and accumulation of toxic metabolites. High-throughput sequencing on the 16S rRNA genes of the biofilm communities highlighted the selection of bacteria genera known to metabolise MCPA (Aminobacter, Cupriavidus, Novosphingobium, Pseudomonas, Rhodococcus, Sphingobium and Sphingopyxis) and glyphosate (Pseudomonas). Altogether, results suggested that zeolites do not only have a passive role of biofilm support but also have protective and nutrient-supportive functions that consequently increase biodiversity of the pesticide degraders growing in the biofilm and influence the pesticide biodegradation rate.With the commercial nuclear technology rising in society nowadays, it is of paramount importance to remove uranium (VI) in radioactive wastewater through a cost-effective and efficient way. Due to simple operation, low cost and abundant adsorbents, the adsorption method has been widely used to treat the radioactive wastewater. However, unsatisfactory selectivity and potential secondary pollution of most adsorbents hamper their practical large-scale application. To overcome these limitations, an effective and green absorbent is developed by functionalizing the waste eggshell membrane (ESM) with carboxyl-rich agents. This design concept transfers waste ESM (or “trash”) into a unique “treasure” absorbent for directly handling radioactive wastewater. The resultant ESM-COOH shows excellent adsorption selectivity toward uranium (VI) with the selectivity coefficient of 75%, exceeding a majority of reported adsorbents. Moreover, its adsorption capacity still maintains 84% of the initial value after six cycles, suggesting good reusability. Z-DEVD-FMK mw These excellent features enable the ESM-COOH to adsorb uranium (VI) highly selectively and efficiently. This work offers a concept to transfer biological wastes into treasure for the mass remediation of water body.

Facebook Pagelike Widget

Who’s Online

Profile picture of Enevoldsen Stender
Profile picture of Quinlan Rosenberg
Profile picture of Chen Hollis
Profile picture of Wooten Williams
Profile picture of Lang Richter
Profile picture of Wooten Thomassen
Profile picture of Lawrence Locklear
Profile picture of Sykes Danielsen
Profile picture of Rojas Binderup
Profile picture of Tolstrup Paaske
Profile picture of Bryan Ross
Profile picture of Didriksen Riis
Profile picture of Abrams Holm
Profile picture of Kirkegaard Douglas
Profile picture of McGee Karlsen