-
Black Mccarty posted an update 3 days ago
Metalloids such as boron and silicon are key elements for plant growth and crop productivity. However, toxic metalloids such as arsenic are increasing in the environment due to inputs from natural sources and human activities. These hazardous metalloids can cause serious health risks to humans and animals if they enter the food chain. Plants have developed highly regulated mechanisms to alleviate the toxicity of metalloids during their 500 million years of evolution. A better understanding the molecular mechanisms underlying the transport and detoxification of toxic metalloids in plants will shed light on developing mitigation strategies. Key transporters and regulatory proteins responsive to toxic metalloids have been identified through evolutionary and molecular analyses. Moreover, knowledge of the regulatory proteins and their pathways can be used in the breeding of crops with lower accumulation of metalloids. These findings can also assist phytoremediation by the exploration of plants such as fern species that hyperaccumulate metalloids from soils and water, and can be used to engineer plants with elevated uptake and storage capacity of toxic metalloids. In summary, there are solutions to remediate contamination due to toxic metalloids by combining the research advances and industrial technologies with agricultural and environmental practices.A regenerable ion-imprinted magnetic biocomposite (IIMB) was successfully synthesized for simultaneous removal of Pb2+ using Serratia marcescens and carboxymethyl chitosan (CMC) as functional carriers, Pb2+ was utilized as the imprinted ion, while Fe3O4 served as the magnetic component. The structure and properties of IIMB were characterized by various techniques. The adsorption kinetics, isotherms and thermodynamics were applied to interpret the Pb2+ adsorption process on IIMB. The results showed the IIMB possessed prominent uptake ability toward Pb2+. The pseudo-second-order kinetic (R2 = 0.9989) and Langmuir models (R2 = 0.9555) fitted the data well. Adsorption thermodynamics revealed that the adsorption was a spontaneous endothermic reaction. The possible adsorption mechanisms involved physical adsorption, electrostatic attraction and complexing. Moreover, because Pb2+ can be specifically and strongly adsorbed on IIMB, a simple method for detection of Pb2+ was established by coupling IIMB with flame atomic absorption spectrometry (IIMB-FAAS). The developed IIMB-FAAS assay can sensitively detect Pb2+ with a linear range from 5.0 to 500.0 μg/L. The detection limit (LOD) of 0.95 μg/L as well as a quantification limit (LOQ) of 3.20 μg/L were obtained. This work proved that the IIMB could selective and efficient adsorb Pb2+, which provided some insights into wastewater treatment, water quality inspection and environmental remediation.Comparative experiments were conducted to determine the effects of various solvents (i.e., deionized water, methanol, ethanol, 1-propanol, butanol, ethylene glycol, hexane, and acetonitrile) on the final compositions, morphologies, and catalytic activities of copper-based nanoparticles (NPs). The NPs were effectively synthesized by pulsed laser ablation (PLA) using a copper plate as the target. The obtained copper NPs were characterized utilizing various analytical techniques. It was established that the developed methodology allows for the production of NPs with different morphologies and compositions in a safe and simple manner. MS41 solubility dmso When laser ablation of a solid copper plate was performed in acetonitrile, the formation of copper(I) cyanide cubes was observed. On the other hand, in deionized water and methanol, spherical and rod-like particles of copper(I) and copper(II) oxide were detected, respectively. The catalytic activity of the prepared copper NPs in the reduction of aromatic nitro compounds, such as 4-nitrophenol and nitrobenzene, was also evaluated. A high k value was determined for the reduction over the copper(II) oxide NPs produced in methanol. Moreover, particles with graphitic carbon (GC) layers exhibited superior catalytic performance in the reduction of a hydrophobic substance, i.e., nitrobenzene, over the reduction of 4-nitrophenol. The enhanced catalytic activity of this catalyst may be due its unique surface morphology and the synergistic effects between the copper nanostructure and the GC layer. Lastly, a detailed reduction pathway mechanism for the catalytic reduction of 4-nitrophenol and nitrobenzene has been proposed.Phthalates are a group of emerging xenobiotic compounds commonly used as plasticizers. In recent times, there has been an increasing concern over the risk of phthalate exposure leading to adverse effects to human health and the environment. Therefore, it is necessary to not only understand the current status of phthalate pollution, their sources, exposure routes and health impacts, but also identify remediation technologies for mitigating phthalate pollution. Present review article aims to inform its readers about the ever increasing data on health burdens posed by phthalates and simultaneously highlights the recent advancements in research to alleviate phthalate contamination from environment. The article enumerates the major phthalates in use today, traces their environmental fate, addresses their growing health hazard concerns and largely focus on to provide an in-depth understanding of the different physical, chemical and biological treatment methods currently being used or under research for alleviating the risk of phthalate pollution, their challenges and the future research perspectives.Cardamine violifolia was found here to accumulate selenium (Se) to over 9000 mg kg-1 dry weight. To investigate the mechanism of Se accumulation and tolerance in C. violifolia, metabolome, transcriptome, and proteome technologies were applied to C. violifolia seedlings treated with selenate. Several sulfate transporter (Sultr) genes (Sultr1;1, Sultr1;2, and Sultr2;1) and sulfur assimilatory enzyme genes showed high expression levels in response to selenate. Many calcium protein and cysteine-rich kinase genes of C. violifolia were downregulated, whereas selenium-binding protein 1 (SBP1) and protein sulfur deficiency-induced 2 (SDI2) of C. violifolia were upregulated by selenate. The expression of genes involved in the ribosome and posttranslational modifications and chaperones in C. violifolia were also detected in response to selenate. Based on the results of this study and previous findings, we suggest that the downregulated expression of calcium proteins and cysteine-rich kinases, and the upregulated expression of SBP1 and SDI2, were important contributors to the Se tolerance of C.