-
Keene Fyhn posted an update 20 days ago
Furthermore, this as-prepared device is also capable of serving as a self-powered capacitive sensor for detection of tiny mechanical impacts and measurement of human finger bending. This results of this work provides a new avenue to easily fabricate electrostatic nanogenerators with high durability and self-powered capacitive sensors for the detection of small impacts.A new radiochromic dosimeter was examined with Raman spectroscopy and an optical approach for assessment of 3D dose distribution integrity. The acronym of the dosimeter is Fricke-XO-Pluronic F-127, where XO denotes xylenol orange; Pluronic F-127 is a copolymer matrix of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), and the dosimeter contains the components of a Fricke dosimetric solution. Two dosimeter samples in cuvettes were partially irradiated such that a radiation dose was absorbed at the bottom of the cuvettes. After irradiation, one sample was stored upside down such that the irradiated part was at the top and another one was stored with the irradiated part at the bottom. Two diffusion coefficients of ferric ion complexes with XO ([XO-Fe]+3) were calculated. They were compared with those for similar dosimeter, however with gelatine matrix instead of Pluronic F-127. The results obtained indicate an impact of the gravitational force on the diffusion of [XO-Fe]+3ions over time after irradiation and thus a possibility of severely undermining the integrity of a dose distribution in irradiated dosimeter. selleckchem The conclusions drawn suggest the necessity of examination of different 3D Fricke dosimeter compositions for anisotropic diffusion of ferric ions.Quantitative ultrasound (QUS) methods have been introduced to assess cortical bone health at the radius and tibia through the assessment of cortical thickness (Ct.Th), cortical porosity and bulk wave velocities. Ultrasonic attenuation is another QUS parameter which is not currently used. We assessed the feasibility ofin vivomeasurement of ultrasonic attenuation in cortical bone with a broadband transducer with 3.5 MHz center frequency. Echoes from the periosteal and endosteal interfaces were fitted with Gaussian pulses using sparse signal processing. Then, the slope of the broadband ultrasonic attenuation (Ct.nBUA) in cortical bone and quality factorQ11-1were calculated with a parametric approach based on the center-frequency shift. Five human subjects were measured at the one-third distal radius with pulse-echo ultrasound, and reference data was obtained with high-resolution x-ray peripheral computed tomography (Ct.Th and cortical volumetric bone mineral density (Ct.vBMD)). Ct.Th was used in the calculation of Ct.nBUA whileQ11-1is obtained solely from ultrasound data. The values of Ct.nBUA (6.7 ± 2.2 dB MHz-1.cm-1) andQ11-1(8.6 ± 3.1%) were consistent with the literature data and were correlated to Ct.vBMD (R2=0.92,p less then 0.01, RMSE = 0.56 dB.MHz-1.cm-1, andR2=0.93,p less then 0.01, RMSE = 0.76%). This preliminary study suggests that the attenuation of an ultrasound signal propagating in cortical bone can be measuredin vivoat the one-third distal radius and that it provides an information on bone quality as attenuation values were correlated to Ct.vBMD. It remains to ascertain that Ct.nBUA andQ11-1measured here exactly reflect the true (intrinsic) ultrasonic attenuation in cortical bone. Measurement of attenuation may be considered useful for assessing bone health combined with the measurement of Ct.Th, porosity and bulk wave velocities in multimodal cortical bone QUS methods.In order to make up for the defects of trans-1,4-polyisoprene (TPI) shape memory polymer, TPI/high density polyethylene (HDPE) hybrid shape memory matrix was prepared from the perspective of matrix composition. The carbon nanotubes (CNTs) with excellent mechanical properties were introduced into the hybrid shape memory matrix. Due to the difference of the inherent properties and geometry of nano-fillers, the change of the content of nano-fillers directly affects the bonding state within the composites. Therefore, it is very important to choose the appropriate content. In order to give full play to the potential of thermodynamics of nano-filler, the TPI/HDPE/CNTs ternary hybrid shape memory nanocomposites were prepared by mechanical melt blending technology combined with dynamic vulcanization and hot-pressing forming technology. The addition of CNTs promotes the formation of the crystal structure of TPI and HDPE, and facilitates the energy transfer between different interface, which greatly improves the thermal conductivity and mechanical properties of the nanocomposites at the same time. The effect of the changes of filler content on the thermodynamic properties of the composite materials were revealed by series of tests. The results show that the CNTs act as nucleating agents in the crystallization region of TPI and HDPE. However, the excessive addition of CNTs can inhibit the formation of HDPE crystal structure. Meanwhile, the crystallinity of nanocomposites is also an important factor affecting its thermal conductivity. The specimens with the CNTs content of 0.5 wt% have excellent tensile resistance and cyclic recovery ability, and it can improve the shape recovery properties. Therefore, the nanocomposite with the CNTs content of 0.5 wt% has the best thermodynamic and shape memory properties.Engineering nonlinear optical responses at the microscale is a key topic in photonics for achieving efficient frequency conversion and light manipulation. Gallium nitride (GaN) is a promising semiconductor material for integrated nonlinear photonic structures. In this work, we use epitaxially grown GaN microwires as nonlinear optical whispering gallery and Fabry-Perot resonators. We demonstrate an effective generation of second-harmonic and polarization-dependent signals of whispering gallery and Fabry-Perot modes (FPM) under near-infrared (NIR) excitation. We show how the rotation of the excitation polarization can be used to control and switch between Fabry-Perot and whispering gallery modes in tapered GaN microwire resonators. We demonstrate the enhancement of two-photon luminescence in the yellow-green spectral range due to efficient coupling between whispering gallery, FPM, and excitonic states in GaN. This luminescence enhancement allows us to conveniently visualize whispering gallery modes excited with a NIR source.