-
Grady Olsson posted an update 21 hours, 24 minutes ago
Copyright © 2020 American Chemical Society.Realizing the diagnosis of lung cancer at an inchoate stage is significant to get valuable time to conduct curative surgery. In this work, we relied on a density functional theory (DFT)-proposed Ru-SnS2 monolayer as a novel, promising biosensor for lung cancer diagnosis through exhaled gas analysis. The results indicated that the Ru-SnS2 monolayer has admirable adsorption performance for three typical volatile organic compounds (VOCs) of lung cancer patients, which therefore results in a remarkable change in the electronic behavior of the Ru-doped surface. As a consequence, the conductivity of the Ru-SnS2 monolayer increases after gas adsorption based on frontier molecular orbital theory. This provides the possibility to explore the Ru-SnS2 monolayer as a biosensor for lung cancer diagnosis at an early stage. In addition, the desorption behavior of three VOCs from the Ru-SnS2 surface is studied as well. Our calculations aim at proposing novel sensing nanomaterials for experimentalists to facilitate the progress in lung cancer prognosis. Copyright © 2020 American Chemical Society.Herein, we report the synthesis, characterization, and catalytic performance of cationic Pd(II)-Anthraphos complexes in the intermolecular hydroamination of aromatic alkynes with aromatic amines. The reaction proceeds with 0.18 mol % of catalyst loading, at 90 °C for 4 h under neat conditions. Good to excellent yields could be obtained for a broad range of amines and alkynes. Copyright © 2020 American Chemical Society.A one-pot clean preparation procedure and catalytic performance of platinum nanoparticles (NPs) reduced and stabilized by sodium lignosulfonate in aqueous solution are reported. No other chemical reagents are needed during the metal reduction and stabilization step, thanks to the active participation of sodium lignosulfonate (SLS). UV-vis, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), 1H NMR, 195Pt NMR, and two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR studies were thoroughly performed to analyze the formation, particle size, and main lattice planes of NPs, the valence-state changes of the metal, and structural changes of SLS. An ecofriendly selective synthesis of cis-pinane from an abundant renewable natural resource, α-pinene, was developed in the presence of the prepared Pt NP aqueous system. Furthermore, this catalyst system was proved to show easy recovery and stable reusability by five-run tests. The synergistic effect of SLS reduction and stabilization not only avoided the introduction of conventional reducing agents and stabilizers but also made full use of the byproducts of the pulp and paper industry. This proved to be an environmentally friendly method for converting the natural resource α-pinene to cis-pinane. Copyright © 2020 American Chemical Society.A porphyrin cis tautomer, where the two central NH protons are on adjacent pyrrole rings, has long been invoked as an intermediate in porphyrin tautomerism. Only recently, however, has such a species been isolated and structurally characterized. Thus, single-crystal X-ray structure determinations of two highly saddled free-base porphyrins, β-heptakis(trifluoromethyl)-meso-tetrakis(p-fluorophenyl)porphyrin, H2[(CF3)7TFPP], and β-octaiodo-5,10,15,20-tetrakis(4′-trifluoromethylphenyl)porphyrin, H2[I8TCF3PP], unambiguously revealed cis tautomeric structures, each stabilized as a termolecular complex with a pair of ROH (R = CH3 or H) molecules that form hydrogen-bonded N-H···O-H···N straps connecting the central NH groups with the antipodal unprotonated nitrogens. The unusual substitution patterns of these two porphyrins, however, have left open the question how readily such supramolecular assemblies might be engineered, which prompted us to examine the much more synthetically accessible β-octabromo-meso-tetraphenylporphyrins. Herein, single-crystal X-ray structures were obtained for two such compounds, 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(4′-trifluoromethylphenyl)porphyrin, H2[Br8TCF3PP], and 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(4′-fluorophenyl)porphyrin, H2[Br8TFPP], and although the central hydrogens could not all be located unambiguously, the electron density could be convincingly modeled as porphyrin cis tautomers, existing in each case as a bis-methanol adduct. In addition, a perusal of the Cambridge Structural Database suggests that there may well be additional examples of porphyrin cis tautomers that have not been recognized as such. We are therefore increasingly confident that porphyrin cis tautomers are readily accessible via supramolecular engineering, involving the simple stratagem of crystallizing a strongly saddled porphyrin from a solvent system containing an amphiprotic species such as water or an alcohol. RS-61443 Copyright © 2020 American Chemical Society.Electrospun materials made from biodegradable polycaprolactone are used widely in various tissue engineering and regenerative medicine applications because of their morphological similarity to the extracellular matrix. However, the main prerequisite for the use of such materials in clinical practice consists of the selection of the appropriate sterilization technique. This study is devoted to the study of the impact of traditional sterilization and disinfection methods on a nanofibrous polycaprolactone layer constructed by means of the needleless electrospinning technique. It was determined that hydrogen peroxide plasma treatment led to the loss of fibrous morphology and the creation of a foil. However, certain sterilization (ethylene oxide, gamma irradiation, and peracetic acid) and disinfection techniques (ethanol and UV irradiation) were found not to lead to a change in morphology; thus, the study investigates their impact on thermal properties, molecular weight, and interactions with a fibroblast cell line. It was determined that the surface properties that guide cell adhesion and proliferation were affected more than the bulk properties. The highest proliferation rate of fibroblasts seeded on nanofibrous scaffolds was observed with respect to gamma-irradiated polycaprolactone, while the lowest proliferation rate was observed following ethylene oxide sterilization. Copyright © 2020 American Chemical Society.