-
Gibbons Bailey posted an update 2 days, 8 hours ago
The multistep synthesis and characterization of new P═C analogues of olefins from readily available starting materials is reported. Specifically, the phosphaalkenes TMOP-P═CPh2 (1a TMOP = 2,4,6-trimethoxyphenyl) and ArF-P═CPh2 [1b ArF = 2,6-bis(trifluoromethyl)phenyl] have been prepared, isolated, and characterized. In addition, synthetically challenging intermediates, such as the corresponding pyrophoric primary phosphines and bis(trimethylsilyl)phosphines, have been isolated and characterized. The title compounds, TMOP-P═CPh2 (1a) and ArF-P═CPh2 (1b), along with TMOP-PH2 (3a) have been characterized by X-ray crystallography. Importantly, the successful synthesis and isolation of phosphaalkenes 1a and 1b provides a foundation for future investigations of their polymerization, by analogy to the known polymerization of Mes-P═CPh2.Cytostatic metallo-drugs mostly bind to the nucleobases of DNA. A new family of dinuclear transition metal complexes was rationally designed to selectively target the phosphate diesters of the DNA backbone by covalent bonding. The synthesis and characterization of the first dinuclear NiII2 complex of this family are presented, and its DNA binding and interference with DNA synthesis in polymerase chain reaction (PCR) are investigated and compared to those of the analogous CuII2 complex. The NiII2 complex also binds to DNA but forms fewer intermolecular DNA cross-links, while it interferes with DNA synthesis in PCR at lower concentrations than CuII2. To simulate possible competing phosphate-based ligands in vivo, these effects have been studied for both complexes with 100-200-fold excesses of phosphate and ATP, which provided no disturbance. The cytotoxicity of both complexes has been studied for human cancer cells and human stem cells with similar rates of proliferation. CuII2 shows the lowest IC50 values and a remarkable preference for killing the cancer cells. Three different assays show that the CuII2 complex induces apoptosis in cancer cells. These results are discussed to gain insight into the mechanisms of action and demonstrate the potential of this family of dinuclear complexes as anticancer drugs acting by a new binding target.In a continuing search for potential inhibitors against human carboxylesterases 1A1 and 2A1 (hCES1A1 and hCES2A1), an EtOAc extract of the roots of Paeonia lactiflora showed strong hCES inhibition activity. Bioassay-guided fractionation led to the isolation of 26 terpenoids including 12 new ones (1-5, 7-12, and 26). Among these, sesquiterpenoids 1 and 6, monoterpenoids 10, 11, and 13-15, and triterpenoids 18-20, 22, and 24-26 contributed to the hCES2A1 inhibition, in the IC50 range of 1.9-14.5 μM, while the pentacyclic triterpenoids 18-26 were responsible for the potent inhibitory activity against hCES1A1, with IC50 values less than 5.0 μM. The structures of all the compounds were elucidated using MS and 1D and 2D NMR data, and the absolute configurations of the new compounds were resolved via specific rotation, experimental and calculated ECD spectra, and single-crystal X-ray diffraction analysis. The structure-activity relationship analysis highlighted that the free HO-3 group in the pentacyclic triterpenoids is crucial for their potent inhibitory activity against hCES1A1.The mineral Zlatogorite, CuNiSb2, was synthesized in the laboratory for the first time by annealing elements at ambient pressure (CuNiSb2-AP). click here Rietveld refinement of synchrotron powder X-ray diffraction data indicates that CuNiSb2-AP crystallizes in the NiAs-derived structure (P3m1, #164) with Cu and Ni ordering. The structure consists of alternate NiSb6 and CuSb6 octahedral layers via face-sharing. The formation of such structure instead of metal disordered NiAs-type structure (P63/mmc, #194) is validated by the lower energy of the ordered phase by first-principle calculations. Interatomic crystal orbital Hamilton population, electron localization function, and charge density analysis reveal strong Ni-Sb, Cu-Sb, and Cu-Ni bonding and long weak Sb-Sb interactions in CuNiSb2-AP. The magnetic measurement indicates that CuNiSb2-AP is Pauli paramagnetic. First-principle calculations and experimental electrical resistivity measurements reveal that CuNiSb2-AP is a metal. The low Seebeck coefficient and large thermal conductivity suggest that CuNiSb2 is not a potential thermoelectric material. Single crystals were grown by chemical vapor transport. The high pressure sample (CuNiSb2-8 GPa) was prepared by pressing CuNiSb2-AP at 700 °C and 8 GPa. However, the structures of single crystal and CuNiSb2-8 GPa are best fit with a disordered metal structure in the P3m1 space group, corroborated by transmission electron microscopy.Four dioxidomolybdenum(VI) complexes of the general structure [MoO2L2] employing the S,N-bidentate ligands pyrimidine-2-thiolate (PymS, 1), pyridine-2-thiolate (PyS, 2), 4-methylpyridine-2-thiolate (4-MePyS, 3) and 6-methylpyridine-2-thiolate (6-MePyS, 4) were synthesized and characterized by spectroscopic means and single-crystal X-ray diffraction analysis (2-4). Complexes 1-4 were reacted with PPh3 and PMe3, respectively, to investigate their oxygen atom transfer (OAT) reactivity and catalytic applicability. Reduction with PPh3 leads to symmetric molybdenum(V) dimers of the general structure [Mo2O3L4] (6-9). Kinetic studies showed that the OAT from [MoO2L2] to PPh3 is 5 times faster for the PymS system than for the PyS and 4-MePyS systems. The reaction of complexes 1-3 with PMe3 gives stable molybdenum(IV) complexes of the structure [MoOL2(PMe3)2] (10-12), while reduction of [MoO2(6-MePyS)2] (4) yields [MoO(6-MePyS)2(PMe3)] (13) with only one PMe3 coordinated to the metal center. The activity of complexes 1-4 in catalytic OAT reactions involving Me2SO and Ph2SO as oxygen donors and PPh3 as an oxygen acceptor has been investigated to assess the influence of the varied ligand frameworks on the OAT reaction rates. It was found that [MoO2(PymS)2] (1) and [MoO2(6-MePyS)2] (4) are similarly efficient catalysts, while complexes 2 and 3 are only moderately active. In the catalytic oxidation of PMe3 with Me2SO, complex 4 is the only efficient catalyst. Complexes 1-4 were also found to catalytically reduce NO3- with PPh3, although their reactivity is inhibited by further reduced species such as NO, as exemplified by the formation of the nitrosyl complex [Mo(NO)(PymS)3] (14), which was identified by single-crystal X-ray diffraction analysis. Computed ΔG⧧ values for the very first step of the OAT were found to be lower for complexes 1 and 4 than for 2 and 3, explaining the difference in catalytic reactivity between the two pairs and revealing the requirement for an electron-deficient ligand system.