Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Stewart Fernandez posted an update 9 hours, 2 minutes ago

    ood pressure, with a medium effect size, in apparently healthy middle-aged and older adults. read more Assessment of negative affectivity may be clinically useful in identifying individuals at risk of hypertension.Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are two techniques used in the resection of gastrointestinal mucosal polyps. The aim of this work is the development and evaluation of an innovative polymeric solution containing sodium carboxymethylcellulose and hyaluronic acid. For this purpose, several mixtures of these two main components, as well as other components such as fructose, citric acid, and zinc, are evaluated in terms of physicochemical and microbiological properties, rheological behavior, extensibility, syringeability, and stability at different storage conditions. Furthermore, the potential production of mucosal elevation and duration is also studied by an ex vivo model using porcine stomach and colon. Results show that the developed polymeric solutions possess optimal values of pH, from 4.58 to 6.63, for their use in the gastrointestinal tract. The formulations exhibit both Newtonian and pseudoplastic behaviors with different viscosity values as a function of their composition. All formulations exhibit high stability properties and no bacterial or fungal growth is detected. MCS01 and MCS05 are the polymeric solutions with the best syringeability results. In this line, MCS05 is the formulation that provides the highest, 2.20 ± 0.18 cm and 1.40 ± 0.11 cm, and longest-lasting, for more than 120 min, elevation effect on porcine submucosal stomach and colon tissues, respectively. Thus, it can be concluded that polymeric solution MCS05 might be considered as a promising tool for use in human EMR and ESD.Neuroinflammation and cell death are among the common symptoms of many central nervous system diseases and injuries. Neuroinflammation and programmed cell death of the various cell types in the brain appear to be part of these disorders, and characteristic for each cell type, including neurons and glia cells. Concerning the effects of 18-kDa translocator protein (TSPO) on glial activation, as well as being associated with neuronal cell death, as a response mechanism to oxidative stress, the changes of its expression assayed with the aid of TSPO-specific positron emission tomography (PET) tracers’ uptake could also offer evidence for following the pathogenesis of these disorders. This could potentially increase the number of diagnostic tests to accurately establish the stadium and development of the disease in question. Nonetheless, the differences in results regarding TSPO PET signals of first and second generations of tracers measured in patients with neurological disorders versus healthy controls indicate that we still have to understand more regarding TSPO characteristics. Expanding on investigations regarding the neuroprotective and healing effects of TSPO ligands could also contribute to a better understanding of the therapeutic potential of TSPO activity for brain damage due to brain injury and disease. Studies so far have directed attention to the effects on neurons and glia, and processes, such as death, inflammation, and regeneration. It is definitely worthwhile to drive such studies forward. From recent research it also appears that TSPO ligands, such as PK11195, Etifoxine, Emapunil, and 2-Cl-MGV-1, demonstrate the potential of targeting TSPO for treatments of brain diseases and disorders.Actinoporins (APs) are a family of pore-forming toxins (PFTs) from sea anemones. These biomolecules exhibit the ability to exist as soluble monomers within an aqueous medium or as constitutively open oligomers in biological membranes. Through their conformational plasticity, actinoporins are considered good candidate molecules to be included for the rational design of molecular tools, such as immunotoxins directed against tumor cells and stochastic biosensors based on nanopores to analyze unique DNA or protein molecules. Additionally, the ability of these proteins to bind to sphingomyelin (SM) facilitates their use for the design of molecular probes to identify SM in the cells. The immunomodulatory activity of actinoporins in liposomal formulations for vaccine development has also been evaluated. In this review, we describe the potential of actinoporins for use in the development of molecular tools that could be used for possible medical and biotechnological applications.Jabara (Citrus jabara Hort. ex Y. Tanaka) is a type of citrus fruit known for its beneficial effect against seasonal allergies. Jabara is rich in the antioxidant narirutin whose anti-allergy effect has been demonstrated. One of the disadvantages in consuming Jabara is its bitter flavor. Therefore, we fermented the fruit to reduce the bitterness and make Jabara easy to consume. Here, we examined whether fermentation alters the anti-allergic property of Jabara. Suppression of degranulation and cytokine production was observed in mast cells treated with fermented Jabara and the effect was dependent on the length of fermentation. We also showed that 5-hydroxymethylfurfural (5-HMF) increases as fermentation progresses and was identified as an active component of fermented Jabara, which inhibited mast cell degranulation. Mast cells treated with 5-HMF also exhibited reduced degranulation and cytokine production. In addition, we showed that the expression levels of phospho-PLCγ1 and phospho-ERK1/2 were markedly reduced upon FcεRI stimulation. These results indicate that 5-HMF is one of the active components of fermented Jabara that is involved in the inhibition of mast cell activation.Ginsenosides are secondary metabolites that belong to the triterpenoid or saponin group. These occupy a unique place in the pharmaceutical sector, associated with the manufacturing of medicines and dietary supplements. These valuable secondary metabolites are predominantly used for the treatment of nervous and cardiac ailments. The conventional approaches for ginsenoside extraction are time-consuming and not feasible, and thus it has paved the way for the development of various biotechnological approaches, which would ameliorate the production and extraction process. This review delineates the biotechnological tools, such as conventional tissue culture, cell suspension culture, protoplast culture, polyploidy, in vitro mutagenesis, hairy root culture, that have been largely implemented for the enhanced production of ginsenosides. The use of bioreactors to scale up ginsenoside yield is also presented. The main aim of this review is to address the unexplored aspects and limitations of these biotechnological tools, so that a platform for the utilization of novel approaches can be established to further increase the production of ginsenosides in the near future.

Facebook Pagelike Widget

Who’s Online

Profile picture of Bredahl Hayes
Profile picture of Petersen Winther
Profile picture of Carey Koefoed
Profile picture of Dam Estes
Profile picture of Gadegaard Westermann
Profile picture of Locklear McIntosh
Profile picture of Bowers Mcdaniel