Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Vognsen Bladt posted an update 3 days, 23 hours ago

    Self-assembly at the air/water interface (AWI) has proven to be an efficient strategy for fabricating two-dimensional (2D) colloidal monolayers, which was widely used as the template for nanosphere lithography in nanophononics, optofluidics, and solar cell studies. However, the monolayers fabricated at the AWI usually suffer from a small domain area and quasi-double layer structure caused by submerged particles. To overcome this, we proposed an improved protocol to prepare 2D colloidal monolayers free of overlapping nanospheres at the AWI. Utilizing the stable suspension infusion to the water surface, a convex meniscus, whose height is related to viscous force, was formed adjoining the three-phase boundary. As a result of the resistance of the convex meniscus, the polystyrene nanospheres in the initial suspension directly self-assembled into a preliminary monolayer, which proved effective in preventing nanospheres’ sinking and increasing the colloidal crystal domain size. An optimal parameter for transferring the monolayer was also developed based on the numerical simulation results. Finally, a wafer-scale monolayer, covered with less than one nanosphere per 100 μm × 100 μm area, was achieved on the desired substrate with an average domain size attaining centimeter scale. The high-quality 2D colloidal crystal may further promote the application of nanosphere lithography, especially in the fields that require a defect-free template.The impact of the chain length or dispersity of polymers in controlling the crystallization of amorphous active pharmaceutical ingredients (APIs) has been discussed for a long time. However, because of the weak control of these parameters in the majority of macromolecules used in pharmaceutical formulations, the abovementioned topic is poorly understood. Herein, four acetylated oligosaccharides, maltose (acMAL), raffinose (acRAF), stachyose (acSTA), and α-cyclodextrin (ac-α-CD) of growing chain lengths and different topologies (linear vs cyclic), mimicking the growing backbone of the polymer, were selected to probe the influence of these structural factors on the crystallization of naproxen (NAP)-an API that does not vitrify regardless of the cooling rate applied in our experiment. It was found that in equimolar systems composed of NAP and linear acetylated oligosaccharides, the progress and activation barrier for crystallization are dependent on the molecular weight of the excipient despite the fact that resgnificant role in controlling the crystallization of this API.In the raser effect, a sample spontaneously emits continuous radiofrequency radiation, allowing exceptionally narrow NMR line widths to be recorded without applying pulses. To achieve this phenomenon, a large negative magnetization must be induced, which we show here can be achieved for the 17O magnetization of isotopically labeled Gd-doped CeO2 using solid effect dynamic nuclear polarization (DNP), at high field and 110 K. This allows a 2 mHz line width to be measured, which is limited only by the magnetic field stability. The raser effect can be reversibly activated and deactivated by magic angle spinning (MAS), which modulates the nuclear spin coherence lifetime. The use of MAS DNP to enable the raser effect should be further applicable to other systems and nuclei.Hydrous boehmite (γ-AlOOH) nanoparticles (BNP) show great potential as nanoscale filler for the fabrication of fiber reinforced nanocomposite materials. Notably, the particle-matrix interaction has been demonstrated to be decisive for improving the matrix-dominant mechanical properties in the past years. Tailoring the surface properties of the nanofiller enables to selectively design the interaction and thus to exploit the benefits of the nanocomposite in an optimal way. Here, an extensive study is presented on the binding of (3-aminopropyl)triethoxysilane (APTES), a common silane surface modifier, on BNP in correlation to different process parameters (concentration, time, temperature, and pH). Furthermore, a comprehensive characterization of the modified BNP was performed by using elemental analysis (EA), thermogravimetric analysis (TGA) coupled with mass spectrometry (TGA-MS), and Kaiser’s test (KT). The results show an increasing monolayer formation up to a complete surface coverage with rising APTES concentration, time, and temperature, resulting in a maximal grafting density of 1.3 molecules/nm2. Unspecific multilayer formation was solely observed under acidic conditions. Comparison of TGA-MS results with data recorded from EA, TGA, and KT verified that TGA-MS is a convenient and highly suitable method to elucidate the ligand binding in detail.The influence of two salts (NaSCN and Na2SO4) on the micellization of a nonionic surfactant (1,2-hexanediol) is quantified using Raman multivariate curve resolution spectroscopy, combined with a generalized theoretical analysis of the corresponding chemical potential changes. Although the SCN- and SO42- anions are on opposite ends of the Hofmeister series, they are both found to lower the critical micelle concentration. Our combined spectroscopic and theoretical analysis traces these observations to the fact that in both salt solutions the ions have a greater affinity for (or are less strongly expelled from) the hydration shell of the micelle than the free surfactant monomer, as quantified using the corresponding chemical potentials and Wyman-Tanford coefficients. This probe-free experimental and theoretical analysis strategy may readily be extended to micelle formation processes involving other surfactants, salts, and cosolvents, as well as to other sorts of aggregation and binding processes.The siderophore piscibactin is a key virulence factor involved in the iron uptake of pathogenic bacteria Photobacterium damselae subsp. this website piscicida and Vibrio anguillarum, responsible for the fish diseases photobacterioisis (pasteurellosis) and vibriosis, respectively. A convergent total synthesis of its Ga3+ complex using l-/d-cysteine as chiral agents and Meldrum’s acid is described. A Staudinger reduction/Aza-Wittig process in the synthesis of the acid-sensitive β-hydroxy-2,4-disubstituted thiazoline moiety and the convenient protecting groups was a key step in this synthesis.

Facebook Pagelike Widget

Who’s Online

Profile picture of Hinrichsen Grimes
Profile picture of Burnette Sandberg
Profile picture of Wilder Tonnesen
Profile picture of Ottosen Hardison
Profile picture of Hjort Marsh
Profile picture of Dahlgaard Nissen
Profile picture of Downey Kelleher
Profile picture of Westermann Levesque
Profile picture of Vinding Tuttle
Profile picture of Cheek Wiese
Profile picture of Kirkland Poole
Profile picture of Brady Garner
Profile picture of Kok Osborne
Profile picture of Tilley Stephenson