Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Strand Gill posted an update 3 days, 20 hours ago

    Background miRNA expression acts as a potential biomarker in many diseases including endometrial carcinoma (EC). miR-486-5p dysregulation is observed in several tumor types, but the roles of miR-486-5p in EC are hardly ever studied. Objective This study aimed to analyze the expression profile of miR-486-5p in tumor tissues and serum samples of patients with EC and explore the target prediction, function analysis and validation in immortal cell lines. Patients and methods A total of 42 freshly paired EC tissues, the corresponding adjacent non-neoplastic tissues and serum samples were also collected from patients with EC, and 42 matched normal serum samples were included as control group. The level of miR-486-5p expression was tested by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was determined by colony formation assay and CCK-8 assay. Furthermore, functional evaluation of miR-486-5p on migration was performed by wound-healing assay and invasion was estimated by transwell invasion assay. qRT-PCR, luciferase reporter assay and Western blotting (WB) were performed to verify the targeting of MARK1 by miR-486-5p. Results miR-486-5p was significantly up-regulated in EC tissues and serum samples, promoting the proliferation, migration and invasive activities of EC cells by targeting MARK1. Conclusion These data indicated miR-486-5p as a novel molecular biomarker for diagnosing and treating EC, and MARK1 might act as a critical and functional target of miR-486-5p with the implications on cell proliferation, migration and invasiveness of EC tumor cells.Nanomagnetic devices, such as nano-field effect transistor biosensors and radio frequency magnetic induction therapies, came into being with the development of medical nanomaterials. The application of nanomagnetic materials in the treatment of cancers is rapidly becoming increasingly important because of its ability to target therapy and diagnose early. In this review, an untechnical overview of the fundamental of magnetism in nanomaterials and an illustration of how these materials are applied are presented. The applications of nano-field effect transistor biosensors for the detection of tumor biomarker nanomaterials in the therapy and diagnosis of cancers and nanomagnetic materials are summarized in this paper. A systemic summary of the use of nanomagnetic materials and nano-filed effect transistor biosensors for the treatment and diagnosis of tumors is also provided in the review.Background Growth arrest-specific 6 (GAS6) is a secreted vitamin K-dependent protein abnormally expressed in various human tumor tissues and can activate the receptor Tyro3, Axl, and Mer to promote cancer cell proliferation and invasion. Until now, the role of GAS6 has been poorly understood in bladder cancer (BCa). Materials and methods Using bioinformatics analysis, we screened genes significantly associated with overall survival in BCa. The association between GAS6 and survival was evaluated by tissue microarray and IHC staining. We investigated the effect of GAS6 on the development of BCa through in vitro and in vivo experiments. Results Here, we report that GAS6 is highly expressed in bladder cancer and is significantly associated with tumor grade, T stage, and worse prognosis. We found that GAS6 depletion inhibited proliferation, migration, and invasion of BCa cells. In addition, bioinformatics analysis revealed that GAS6 may be involved in the regulation of PI3K-AKT signaling pathway by binding to receptor TAM and has a significant positive correlation with PI3K family gene expression. Furthermore, Western blot experiments have shown that GAS6 might modulate the PI3K-AKT signaling to regulate proliferation and invasion of BCa cells. Treatment of BCa cells with SC79, an AKT activator, partially restored the effect of GAS6 silencing on cell proliferation and invasion. Conclusion The present study suggests that GAS6 may play a pivotal role in the development of BCa and may be a potential target for its treatment.Background Recent studies suggest many long non-coding RNAs (lncRNAs) are crucial oncogenes or tumor suppressors. This study intended to investigate the biological function and mechanism of lncRNA TTN antisense RNA 1 (TTN-AS1) in the progression of breast cancer (BC). Materials and methods BC tissue samples were collected. The expression of TTN-AS1 in BC tissues and adjacent tissues was detected by qRT-PCR, and the relationship between pathological indicators and TTN-AS1 expression was analyzed by chi-square test. BC cell lines T47D and BT549 were utilized as cell models. CCK-8 assay and BrdU assay were used to detect the effect of TTN-AS1 on BC cell proliferation. Transwell assay was used to detect the effects of TTN-AS1 on cell migration and invasion. find more In addition, dual-luciferase reporter gene assay was used to confirm the targeting relationship between miR-524-5p and TTN-AS1. Western blot was used to detect the function of TTN-AS1 on regulating ribonucleotide reductase subunit 2 (RRM2) and survivin. Additionally, subcutaneous xenotransplanted tumor model and tail vein injection model were constructed in vivo. Results The expression of TTN-AS1 in BC tissues was significantly higher than that in normal tissues, and its high expression was correlated with adverse pathological indicators. Overexpression of TTN-AS1 significantly promoted the proliferation, migration and invasion of BC cells. TTN-AS1 knockdown suppressed the malignant phenotypes of BC cells. TTN-AS1 overexpression significantly impeded the expression of miR-524-5p, but increased the expression of RRM2. Conclusion TTN-AS1 exerts oncogenic function in BC by repressing miR-524-5p and increasing the expression of RRM2.Objective CircRNAs are emerging as vital regulators in a variety of cancers. However, the expression pattern and potential mechanism of circRNAs in triple-negative breast cancer remain unclear. In this study, we aim to systematically investigate circRNAs alteration in triple-negative breast cancer tissues. Methods Microarray and bioinformatics analyses were used to identify circRNAs expression in cancer tissues. qRT-PCR was conducted to measure the expression of RNAs. Cell Counting Kit-8, wound-healing and transwell assays were conducted to investigate the function of circRNAs. Dual-luciferase reporter assay was performed to validate target binding. Results Hsa_circ_0131242 was highly expressed in both cancer tissues and cell lines compared to control. Subsequently, statistical analyses revealed that high expression of hsa_circ_0131242 was positively correlated with advanced tumor stages and poorer clinical features in cancer patients. Hsa_circ_0131242 knockdown could suppress the progression of breast cancer cells.

Facebook Pagelike Widget

Who’s Online

Profile picture of Oconnor Mcknight
Profile picture of Freeman Avery
Profile picture of Brock Loomis
Profile picture of Kvist Schack
Profile picture of Wagner Glud
Profile picture of Soto Little
Profile picture of Everett Dupont
Profile picture of Lindsay Klausen
Profile picture of Kofod Karstensen
Profile picture of Zimmerman Brodersen
Profile picture of Macias Pehrson
Profile picture of Timmons Lunding
Profile picture of Tran Brady
Profile picture of Kuhn Lynge