-
Gauthier Jacobs posted an update 2 days, 8 hours ago
Here, we introduce a binary classifier based on an artificial neural network that can help in explaining those differences and that can be used to support the design of containment policies. 2-NBDG in vitro We found that SARS-CoV-2 infection frequency positively correlates with particulate air pollutants, and specifically with particulate matter 2.5 (PM2.5), while ozone gas is oppositely related with the number of infected individuals. We propose that atmospheric air pollutants could thus serve as surrogate markers to complement the infection outbreak anticipation.Recent advances in clinical oncology is based on exploiting the capacity of the immune system to combat cancer immuno-oncology. Thus, immunotherapy of cancer is now used to treat a variety of malignant diseases. A striking feature is that even patients with late-stage disease may experience curative responses. However, most patients still succumb to disease, and do not benefit from treatment. Exercise has gained attention in clinical oncology and has been used for many years to improve quality of life, as well as to counteract chemotherapy-related complications. However, more recently, exercise has garnered interest, largely due to data from animal studies suggesting a striking therapeutic effect in preclinical cancer models; an effect largely mediated by the immune system. In humans, physical activity is associated with a lower risk for a variety of malignancies, and some data suggest a positive clinical effect for cancer patients. Exercise leads to mobilization of cells of the immune system, resulting in redistribution to different body compartments, and in preclinical models, exercise has been shown to lead to immunological changes in the tumor microenvironment. This suggests that exercise and immunotherapy could have a synergistic effect if combined.Abnormal protein aggregation has been intensively studied for over 40 years and broadly discussed in the literature due to its significant role in neurodegenerative diseases etiology. Structural reorganization and conformational changes of the secondary structure upon the aggregation determine aggregation pathways and cytotoxicity of the aggregates, and therefore, numerous analytical techniques are employed for a deep investigation into the secondary structure of abnormal protein aggregates. Molecular spectroscopies, including Raman and infrared ones, are routinely applied in such studies. Recently, the nanoscale spatial resolution of tip-enhanced Raman and infrared nanospectroscopies, as well as the high sensitivity of the surface-enhanced Raman spectroscopy, have brought new insights into our knowledge of abnormal protein aggregation. In this review, we order and summarize all nano- and micro-spectroscopic marker bands related to abnormal aggregation. Each part presents the physical principles of each particular spectroscopic technique listed above and a concise description of all spectral markers detected with these techniques in the spectra of neurodegenerative proteins and their model systems. Finally, a section concerning the application of multivariate data analysis for extraction of the spectral marker bands is included.Thermal magnetic resonance (ThermalMR) accommodates radio frequency (RF)-induced temperature modulation, thermometry, anatomic and functional imaging, and (nano)molecular probing in an integrated RF applicator. This study examines the feasibility of ThermalMR for the controlled release of a model therapeutics from thermoresponsive nanogels using a 7.0-tesla whole-body MR scanner en route to local drug-delivery-based anticancer treatments. The capacity of ThermalMR is demonstrated in a model system involving the release of fluorescein-labeled bovine serum albumin (BSA-FITC, a model therapeutic) from nanometer-scale polymeric networks. These networks contain thermoresponsive polymers that bestow environmental responsiveness to physiologically relevant changes in temperature. The release profile obtained for the reference data derived from a water bath setup used for temperature stimulation is in accordance with the release kinetics deduced from the ThermalMR setup. In conclusion, ThermalMR adds a thermal intervention dimension to an MRI device and provides an ideal testbed for the study of the temperature-induced release of drugs, magnetic resonance (MR) probes, and other agents from thermoresponsive carriers. Integrating diagnostic imaging, temperature intervention, and temperature response control, ThermalMR is conceptually appealing for the study of the role of temperature in biology and disease and for the pursuit of personalized therapeutic drug delivery approaches for better patient care.Responses of trembling aspen (Populus tremuloides), jack pine (Pinus banksiana), and white spruce (Picea glauca) seedlings to root zone pH ranging from 5 to 9 were studied in sand culture in the presence of two mineral nutrition levels. After eight weeks of treatments, effects of pH on plant dry weights varied between the plant species and were relatively minor in white spruce. Higher nutrient supply significantly increased dry weights only in trembling aspen subjected to pH 5 treatment. There was little effect of pH and nutrition level on net photosynthesis and transpiration rates in white spruce and jack pine, but net photosynthesis markedly declined in aspen at high pH. Chlorophyll concentrations in young foliage decreased the most in trembling aspen and jack pine. The effects of high pH treatments on the concentrations of Mg, P, Ca, Mn, Zn, and Fe in young foliage varied between the plant species with no significant decreases of Fe and Zn recorded in trembling aspen and white spruce, respectively. This was in contrast to earlier reports from the studies carried out in hydroponic culture. The sand culture system that we developed could be a more suitable alternative to hydroponics to study plant responses to pH in the root zone. Plant responses to high pH appear to involve complex events with a likely contribution of nutritional effects and altered water transport processes.Glycerol and alkanediols are being studied as alternative solvents to extract phytochemicals from plant material, often as hydrogen bond donors in deep eutectic solvents (DESs). Many of those alcohols are liquid at room temperature, yet studies of their use as extraction solvents are scarce. In this work, glycerol and a series of alkanediols (1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,2-pentanediol, 1,5-pentanediol, and 1,2-hexanediol) were studied for the extraction of phenolic compounds from Juglans regia L. leaves, a rich source of this class of bioactive compounds. The extraction yield was quantified, and the bioactivity of both extracts and pure solvents was evaluated by measuring the anti-inflammatory and cytotoxic activities. The solvents showing the best combined results were 1,2 and 1,3-propanediol, as their extracts presented a high amount of phenolic compounds, close to the results of ethanol, and similar cytotoxicity against cervical carcinoma cells, with no impact on non-tumor porcine liver cells in the studied concentration range.