Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Chambers Gilmore posted an update 8 hours, 16 minutes ago

    Mitochondrial complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from ubiquinone reduction by NADH to drive protons across the energy-transducing inner membrane. Recent cryo-EM analyses of mammalian and yeast complex I have revolutionized structural and mechanistic knowledge and defined structures in different functional states. Here, we describe a 2.7-Å-resolution structure of the 42-subunit complex I from the yeast Yarrowia lipolytica containing 275 structured water molecules. We identify a proton-relay pathway for ubiquinone reduction and water molecules that connect mechanistically crucial elements and constitute proton-translocation pathways through the membrane. selleck By comparison with known structures, we deconvolute structural changes governing the mammalian ‘deactive transition’ (relevant to ischemia-reperfusion injury) and their effects on the ubiquinone-binding site and a connected cavity in ND1. Our structure thus provides important insights into catalysis by this enigmatic respiratory machine.The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA.Interactions between chromatin-associated proteins and the histone landscape play major roles in dictating genome topology and gene expression. Cancer-specific fusion oncoproteins, which display unique chromatin localization patterns, often lack classical DNA-binding domains, presenting challenges in identifying mechanisms governing their site-specific chromatin targeting and function. Here we identify a minimal region of the human SS18-SSX fusion oncoprotein (the hallmark driver of synovial sarcoma) that mediates a direct interaction between the mSWI/SNF complex and the nucleosome acidic patch. This binding results in altered mSWI/SNF composition and nucleosome engagement, driving cancer-specific mSWI/SNF complex targeting and gene expression. Furthermore, the C-terminal region of SSX confers preferential affinity to repressed, H2AK119Ub-marked nucleosomes, underlying the selective targeting to polycomb-marked genomic regions and synovial sarcoma-specific dependency on PRC1 function. Together, our results describe a functional interplay between a key nucleosome binding hub and a histone modification that underlies the disease-specific recruitment of a major chromatin remodeling complex.Glutamylation, introduced by tubulin tyrosine ligase-like (TTLL) enzymes, is the most abundant modification of brain tubulin. Essential effector proteins read the tubulin glutamylation pattern, and its misregulation causes neurodegeneration. TTLL glutamylases post-translationally add glutamates to internal glutamates in tubulin carboxy-terminal tails (branch initiation, through an isopeptide bond), and additional glutamates can extend these (elongation). TTLLs are thought to specialize in initiation or elongation, but the mechanistic basis for regioselectivity is unknown. We present cocrystal structures of murine TTLL6 bound to tetrahedral intermediate analogs that delineate key active-site residues that make this enzyme an elongase. We show that TTLL4 is exclusively an initiase and, through combined structural and phylogenetic analyses, engineer TTLL6 into a branch-initiating enzyme. TTLL glycylases add glycines post-translationally to internal glutamates, and we find that the same active-site residues discriminate between initiase and elongase glycylases. These active-site specializations of TTLL glutamylases and glycylases ultimately yield the chemical complexity of cellular microtubules.Electron-phonon scattering is the key process limiting the efficiency of modern nanoelectronic and optoelectronic devices, in which most of the incident energy is converted to lattice heat and finally dissipates into the environment. Here, we report an acoustic phonon recycling process in graphene-WS2 heterostructures, which couples the heat generated in graphene back into the carrier distribution in WS2. This recycling process is experimentally recorded by spectrally resolved transient absorption microscopy under a wide range of pumping energies from 1.77 to 0.48 eV and is also theoretically described using an interfacial thermal transport model. The acoustic phonon recycling process has a relatively slow characteristic time (>100 ps), which is beneficial for carrier extraction and distinct from the commonly found ultrafast hot carrier transfer (~1 ps) in graphene-WS2 heterostructures. The combination of phonon recycling and carrier transfer makes graphene-based heterostructures highly attractive for broadband high-efficiency electronic and optoelectronic applications.Conferences are important for professional learning and for building academics’ reputations and networks. All members of the scientific community should feel supported and free to contribute their best at such events. I evaluated the actions and policies of conferences held by international academic societies for ecology and conservation since 2009, to assess whether conferences support participation across sexual orientations and gender identities. Although half of the 30 conferences had codes of conduct promoting equity, diversity and inclusion, the quantity and quality of initiatives to support such principles varied between societies and years. Conferences with codes were significantly more likely to implement structural initiatives to minimize discrimination or harassment, such as procedures for reporting misconduct and submission guidelines to promote speaker diversity, as well as initiatives to support parents. Initiatives minimizing barriers to attendance were rare; 47% of conferences were held in locations that discriminate against certain identities and less then 10% promoted event safety and accessibility to potential attendees.

Facebook Pagelike Widget

Who’s Online

Profile picture of Bailey Nyholm
Profile picture of powafoc890
Profile picture of Josephsen Driscoll
Profile picture of Poole Hougaard
Profile picture of Sosa Boswell
Profile picture of Freeman Castaneda
Profile picture of Gray Tolstrup
Profile picture of Enemark Gillespie