-
Meredith Norton posted an update 3 days, 4 hours ago
5 cd/m2 and an external quantum efficiency of 0.17%, the fabricated yellow LEDs exhibit a long half-lifetime of 5.2 h at 25 °C and still function properly at 60 °C with a half-lifetime of 2.2 h, which benefits from the superior resistance of CsCu2I3 to heat, moisture, and oxidation in ambient environmental conditions. The results obtained promise the copper halides with broadband light emission as an environment-friendly and stable yellow emitter for the LEDs compatible with practical applications.Near-infrared (NIR) fluorescent probes can deeply penetrate through tissues with little damage. To facilitate image-guided theranostics, researchers usually apply a desired amount of photosensitizers to achieve effective photothermal responses. However, these probes could easily suffer from low photostability and aggregated-caused quenching effect in high concentrations. In this paper, the rational incorporation of an aggregated-induced emission (AIE) unit into the structure of heptamethine cyanine IR-780 is reported. Using tetraphenylethene (TPE) as an AIE core, we synthesize three TPE-modified IR-780 probes (IR-780 AIEgens) via different linkages. The IR-780 derivatives all show enhanced AIE features, in which the probe with an ether linkage (IR780-O-TPE) is superior in rapid cell uptake, high targeting capacity, and good photostability. Moreover, IR780-O-TPE exhibits the strongest cytotoxicity to HeLa cells (IC50 = 3.3 μM). The three IR-780 derivatives displayed a photothermal response in a concentration-dependent manner, in which IR-780 AIEgens are more cytotoxic than IR-780, with IC50 of 0.3 μM under 808 nm laser irradiation. In tumor-bearing mice, the optimal probe IR780-O-TPE also showed a more effective photothermal response than IR-780. By illustrating the relationship between aggregation state with photophysical properties, cell imaging, and cytotoxicity, this work is helpful in modulating NIR-based photosensitizers into AIE features for efficient image-guided theranostics.We demonstrate a new micro/nanofluidic system for continuous and automatic monitoring of protein product size and quantity directly from the culture supernatant during a high-cell-concentration CHO cell perfusion culture. A microfluidic device enables clog-free cell retention for a bench-scale (350 mL) perfusion bioreactor that continuously produces the culture supernatant containing monoclonal antibodies (IgG1). A nanofluidic device directly monitors the protein size and quantity in the culture supernatant. The continuous-flow and fully automated operation of this nanofluidic protein analytics reduces design complexity and offers more detailed information on protein products than offline and batch-mode conventional analytics. Moreover, chemical and mechanical robustness of the nanofluidic device enables continuous monitoring for several days to a week. This continuous and online protein quality monitoring could be deployed at different steps and scales of biomanufacturing to improve product quality and manufacturing efficiency.Xenobiotics are ubiquitous in the environment and modified in the human body by phase I and II metabolism. Liquid chromatography coupled to high resolution mass spectrometry is a powerful tool to investigate these biotransformation products. We present a workflow based on stable isotope-assisted metabolomics and the bioinformatics tool MetExtract II for deciphering xenobiotic metabolites produced by human cells. Its potential was demonstrated by the investigation of the metabolism of deoxynivalenol (DON), an abundant food contaminant, in a liver carcinoma cell line (HepG2) and a model for colon carcinoma (HT29). Detected known metabolites included DON-3-sulfate, DON-10-sulfonate 2, and DON-10-glutathione as well as DON-cysteine. Conjugation with amino acids and an antibiotic was confirmed for the first time. The approach allows the untargeted elucidation of human xenobiotic products in tissue culture. It may be applied to other fields of research including drug metabolism, personalized medicine, exposome research, and systems biology to better understand the relevance of in vitro experiments.The area selective growth of polymers and their use as inhibiting layers for inorganic film depositions may provide a valuable self-aligned process for fabrication. TGFbeta inhibitor Polynorbornene (PNB) thin films were grown from surface-bound initiators and show inhibitory properties against the atomic layer deposition (ALD) of ZnO and TiO2. Area selective control of the polymerization was achieved through the synthesis of initiators that incorporate surface-binding ligands, enabling their selective attachment to metal oxide features versus silicon dielectrics, which were then used to initiate surface polymerizations. The subsequent use of these films in an ALD process enabled the area selective deposition (ASD) of up to 39 nm of ZnO. In addition, polymer thickness was found to play a key role, where films that underwent longer polymerization times were more effective at inhibiting higher numbers of ALD cycles. Finally, while the ASD of a TiO2 film was not achieved despite blanket studies showing inhibition, the ALD deposition on polymer regions of a patterned film produced a different quality metal oxide and therefore altered its etch resistance. This property was exploited in the area selective etch of a metal feature. This demonstration of an area selective surface-grown polymer to enable ASD and selective etch has implications for the fabrication of both micro- and nanoscale features and surfaces.Syngas, consisting of equimolar CO and H2, is an important feedstock for large-scale production of a wide range of commodity chemicals including aldehyde, methanol, ammonia, and other oxygenated chemicals. Dry reforming of methane (DRM), proceeding by reacting greenhouse gases, CO2 and CH4, at high temperatures in the presence of a metal catalyst, is considered one of the most environmentally friendly routes for syngas production. Nevertheless, nonprecious metal-based catalysts, which can operate at relatively low temperatures for high product yields and selectivities, are required to drive the DRM process for industrial applications effectively. Here, we developed NiCo@C nanocomposites from a corresponding NiCo-based bimetallic metal-organic framework (MOF) to serve as high-performance catalysts for the DRM process, achieving high turnover frequencies (TOF) at low temperatures (>5.7 s-1 at 600 °C) and high product selectivities (H2/CO = 0.9 at 700 °C). The incorporation of Co in Ni catalysts improves the operation stability and light-off stability.