Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Fink Konradsen posted an update 3 days, 15 hours ago

    Neuromuscular junctions (NMJs) ensure communication between motor neurons (MNs) and muscle; however, in MN disorders, such as amyotrophic lateral sclerosis (ALS), NMJs degenerate resulting in muscle atrophy. The aim of this study was to establish a versatile and reproducible in vitro model of a human motor unit to investigate the effects of ALS-causing mutations. Therefore, we generated a co-culture of human induced pluripotent stem cell (iPSC)-derived MNs and human primary mesoangioblast-derived myotubes in microfluidic devices. A chemotactic and volumetric gradient facilitated the growth of MN neurites through microgrooves resulting in the interaction with myotubes and the formation of NMJs. We observed that ALS-causing FUS mutations resulted in reduced neurite outgrowth as well as an impaired neurite regrowth upon axotomy. NMJ numbers were likewise reduced in the FUS-ALS model. Interestingly, the selective HDAC6 inhibitor, Tubastatin A, improved the neurite outgrowth, regrowth, and NMJ morphology, prompting HDAC6 inhibition as a potential therapeutic strategy for ALS.Non-muscle myosin IIA plays an important role in cell adhesion, cell migration, and tissue architecture. We previously showed that low activity of the heavy chain of non-muscle myosin II Myh9 is beneficial to LGR5+ intestinal stem cell maintenance. However, the function of Myh9 in adult mouse intestinal epithelium is largely unclear. In this study, we used the inducible Villin-creERT2 knockout approach to delete Myh9 in adult mouse intestinal epithelium and observed that homozygous deletion of Myh9 causes colitis-like morphologic changes in intestine, leads to a high sensitivity to dextran sulfate sodium and promotes colitis-related adenoma formation in the colon. Myh9 deletion disturbs cell junctions and impairs intestinal lumen barrier integrity, promoting the necroptosis of epithelial cells. Consistently, these changes can be partially rescued by Ripk3 knockout. Cell Cycle inhibitor Our results indicate that Myh9 is required for the maintenance of intestinal epithelium integrity and the prevention of cell necroptosis.Stem cell-based embryo models by cultured pluripotent and extra-embryonic lineage stem cells are novel platforms to model early postimplantation development. We showed that induced pluripotent stem cells (iPSCs) could form ITS (iPSCs and trophectoderm stem cells) and ITX (iPSCs, trophectoderm stem cells, and XEN cells) embryos, resembling the early gastrula embryo developed in vivo. To facilitate the efficient and unbiased analysis of the stem cell-based embryo model, we set up a machine learning workflow to extract multi-dimensional features and perform quantification of ITS embryos using 3D images collected from a high-content screening system. We found that different PSC lines differ in their ability to form embryo-like structures. Through high-content screening of small molecules and cytokines, we identified that BMP4 best promoted the morphogenesis of the ITS embryo. Our study established an innovative strategy to analyze stem cell-based embryo models and uncovered new roles of BMP4 in stem cell-based embryo models.Recently, a new wave of synthetic embryo systems (SESs) has been established from cultured cells for efficient and ethical embryonic development research. We recently reported our epiblast stem cell (EPISC) reprogramming SES that generates numerous blastocyst (BC)-like hemispheres (BCLH) with pluripotent and extraembryonic cell features detected by microscopy. Here, we further explored the system over key time points with single-cell RNA-sequencing analysis. We found broad induction of the 2C-like reporter MERVL and RNA velocities diverging to three major cell populations with gene expression profiles resembling those of pluripotent epiblast, primitive endoderm, and trophectoderm. Enrichment of those three induced BC-like cell fates involved key gene-regulatory networks, zygotic genome activation-related genes, and specific RNA splicing, and many cells closely resembled in silico models. This analysis confirms the induction of extraembryonic cell populations during EPISC reprogramming. We anticipate that our unique BCLH SES and rich dataset may uncover new facets of cell potency, improve developmental biology, and advance biomedicine.Emerging technologies in stem cell engineering have produced sophisticated organoid platforms by controlling stem cell fate via biomaterial instructive cues. By micropatterning and differentiating human induced pluripotent stem cells (hiPSCs), we have engineered spatially organized cardiac organoids with contracting cardiomyocytes in the center surrounded by stromal cells distributed along the pattern perimeter. We investigated how geometric confinement directed the structural morphology and contractile functions of the cardiac organoids and tailored the pattern geometry to optimize organoid production. Using modern data-mining techniques, we found that pattern sizes significantly affected contraction functions, particularly in the parameters related to contraction duration and diastolic functions. We applied cardiac organoids generated from 600 μm diameter circles as a developmental toxicity screening assay and quantified the embryotoxic potential of nine pharmaceutical compounds. These cardiac organoids have potential use as an in vitro platform for studying organoid structure-function relationships, developmental processes, and drug-induced cardiac developmental toxicity.The glucose-dependent insulinotropic polypeptide (GIP) is a 42-residue metabolic hormone that is actively being targeted for its regulatory role of glycemia and energy balance. Limited structural data of its receptor has made ligand design tedious. This study investigates the structure and function of the GIP receptor (GIPR), using a homology model based on the GLP-1 receptor. Molecular dynamics combined with in vitro mutational data were used to pinpoint residues involved in ligand binding and/or receptor activation. Significant differences in binding mode were identified for the naturally occurring agonists GIP(1-30)NH2 and GIP(1-42) compared with high potency antagonists GIP(3-30)NH2 and GIP(5-30)NH2. Residues R1832.60, R1902.67, and R3005.40 are shown to be key for activation of the GIPR, and evidence suggests that a disruption of the K293ECL2-E362ECL3 salt bridge by GIPR antagonists strongly reduces GIPR activation. Combinatorial use of these findings can benefit rational design of ligands targeting the GIPR.

Facebook Pagelike Widget

Who’s Online

Profile picture of Mcgee Eriksen
Profile picture of Siegel Roed
Profile picture of Lambert Burris
Profile picture of Lambert Klint
Profile picture of Blaabjerg Corbett
Profile picture of Oneal Washington
Profile picture of Best Hinton
Profile picture of Kehoe Deal
Profile picture of Lomholt Burnette
Profile picture of Thomas Henson
Profile picture of Harris Walton