Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Eaton McClellan posted an update 4 days, 11 hours ago

    Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods can non-invasively assess brown adipose tissue (BAT) structure and function. Recently, MRI and MRS have been proposed as a means to differentiate BAT from white adipose tissue (WAT) and to extract morphological and functional information on BAT inaccessible by other means. Specifically, proton MR (1H) techniques, such as proton density fat fraction mapping, diffusion imaging, and intermolecular multiple quantum coherence imaging, have been employed to access BAT microstructure; MR thermometry, relaxometry, and MRI and MRS with 31P, 2H, 13C, and 129Xe have shown to provide complementary information on BAT function. The purpose of the present review is to provide a comprehensive overview of MR imaging and spectroscopy techniques used to detect BAT in rodents and in humans. The present work discusses common challenges of current methods and provides an outlook on possible future directions of using MRI and MRS in BAT studies.Aim To determine the association of alanine aminotransferase with different metabolic phenotypes of obesity in a nationally- representative sample of Iranian children and adolescents. Methods This national study was conducted in the framework of the fifth survey of a national surveillance program entitled Childhood and Adolescence Surveillance and Prevention of Adult Non-communicable Disease study. Participants consisted of 4,200 subjects aged 7-18 years, who were recruited by multistage random cluster sampling from 30 provinces in Iran. They were categorized to normal weight and obese groups and in each group those with and without MetS components. Results Overall, 3,843 of participants completed the survey (response rate 91.5%). Their mean (SD) age was 12.58 (3.15) years; 52.6% were boys, and 72.7% lived in urban areas. Mean of alanine aminotransferase (ALT) in subjects with abdominal obesity and general obesity was 8.81 (95% CI 7.99-9.62) (IU/L) and 8.87 (95% CI 7.28-10.46) (IU/L), respectively. According to the adjusted model, one unit increment in ALT increased odds of being metabolically non-healthy obese (MNHO) by 2% compared to metabolically healthy non-obese (MHNO) [adj.OR (95% CI) 1.02 (1.01-1.04)]. Also, subjects in the third and fourth quartiles of serum ALT had significantly greater odds of being MNHO than those in its first quartile [Q3/Q1 adj. OR (95% CI) 3.85 (1.70-8.71); Q4/Q1 Adj. OR (95% CI) 3.63 (1.51-8.73)]. Conclusion This large population-based study revealed significant associations between metabolic phenotypes of obesity and ALT level.[This corrects the article DOI 10.3389/fneur.2019.01369.].The Ontario Neurodegenerative Research Initiative (ONDRI) is a 3 years multi-site prospective cohort study that has acquired comprehensive multiple assessment platform data, including 3T structural MRI, from neurodegenerative patients with Alzheimer’s disease, mild cognitive impairment, Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and cerebrovascular disease. This heterogeneous cross-section of patients with complex neurodegenerative and neurovascular pathologies pose significant challenges for standard neuroimaging tools. To effectively quantify regional measures of normal and pathological brain tissue volumes, the ONDRI neuroimaging platform implemented a semi-automated MRI processing pipeline that was able to address many of the challenges resulting from this heterogeneity. The purpose of this paper is to serve as a reference and conceptual overview of the comprehensive neuroimaging pipeline used to generate regional brain tissue volumes and neurovascular marker data that will be made publicly available online.Reach-to-grasp is an evolutionarily conserved motor function that is adversely impacted following stroke and traumatic brain injury (TBI). Non-invasive brain stimulation (NIBS) methods, such as transcranial magnetic stimulation and transcranial direct current stimulation, are promising tools that could enhance functional recovery of reach-to-grasp post-brain injury. Though the rodent literature provides a causal understanding of post-injury recovery mechanisms, it has had a limited impact on NIBS protocols in human research. The high degree of homology in reach-to-grasp circuitry between humans and rodents further implies that the application of NIBS to brain injury could be better informed by findings from pre-clinical rodent models and neurorehabilitation research. Here, we provide an overview of the advantages and limitations of using rodent models to advance our current understanding of human reach-to-grasp function, cortical circuitry, and reorganization. Pracinostat We propose that a cross-species comparison of reach-to-grasp recovery could provide a mechanistic framework for clinically efficacious NIBS treatments that could elicit better functional outcomes for patients.We propose a framework for understanding and interpreting the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) that considers wider determinants of health and long-term temporal variation in pathophysiological features and disease phenotype throughout the natural history of the disease. As in other chronic diseases, ME/CFS evolves through different stages, from asymptomatic predisposition, progressing to a prodromal stage, and then to symptomatic disease. Disease incidence depends on genetic makeup and environment factors, the exposure to singular or repeated insults, and the nature of the host response. In people who develop ME/CFS, normal homeostatic processes in response to adverse insults may be replaced by aberrant responses leading to dysfunctional states. Thus, the predominantly neuro-immune manifestations, underlined by a hyper-metabolic state, that characterize early disease, may be followed by various processes leading to multi-systemic abnormalities and related symptoms. This abnormal state and the effects of a range of mediators such as products of oxidative and nitrosamine stress, may lead to progressive cell and metabolic dysfunction culminating in a hypometabolic state with low energy production. These processes do not seem to happen uniformly; although a spiraling of progressive inter-related and self-sustaining abnormalities may ensue, reversion to states of milder abnormalities is possible if the host is able to restate responses to improve homeostatic equilibrium. With time variation in disease presentation, no single ME/CFS case description, set of diagnostic criteria, or molecular feature is currently representative of all patients at different disease stages. While acknowledging its limitations due to the incomplete research evidence, we suggest the proposed framework may support future research design and health care interventions for people with ME/CFS.

Facebook Pagelike Widget

Who’s Online

Profile picture of Aguilar Hoff
Profile picture of Mosley Valencia
Profile picture of Walter Burt
Profile picture of nawit32378
Profile picture of Birch Halberg
Profile picture of Koenig Blum
Profile picture of Vega Riise
Profile picture of Barbour Stougaard
Profile picture of Martinsen Archer