Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Malloy Falk posted an update 5 days, 10 hours ago

    Geodetic observations and large-scale laboratory experiments show that seismic instability is preceded by slow slip within a finite nucleation zone. In laboratory experiments rupture nucleation is studied mostly using bare (rock) interfaces, whereas upper crustal faults are typically filled with gouge. To investigate effects of gouge on rupture nucleation, we performed a biaxial shearing experiment on a 350 mm long saw-cut fault filled with gypsum gouge, at room temperature and a minimum horizontal stress σ2 = 0.3-5 MPa. The gouge layer was sandwiched between polymethylmethacrylate (PMMA) plates For reference also a fault without gouge was deformed. Strain gauges and Digital Image Correlation were used to monitor the deformation field along the fault zone margins. Stick-slip behavior occurred on both the gouge-filled fault and the PMMA fault. Nucleation of instability on the PMMA fault persistently occurred from one location 2/3 to 3/4 along the fault adjacent to a slow slip zone at the fault end, but nucleation on the gouge-filled fault was more variable, nucleating at the ends and/or at approximately 2/3 along the fault, with precursory slip occurring over a large fraction of the fault. Nucleation correlated to regions of high average fault stress ratio τ/σ n , which was more variable for the gouge-filled fault due to small length scale variations in normal stress caused by heterogeneous gouge compaction. Rupture velocities and slip rates were lower for the gouge-filled fault than for the bare PMMA fault. Stick-slip persisted when σ2 was lowered and the nucleation zone length increased, expanding from the center to the sample ends before transitioning into instability.Stripe-like patterns of surface wave arrival angle deviations have been observed by several seismological studies around the world, but this phenomenon has not been explained so far. Here we test the hypothesis that systematic arrival angle deviations observed at the AlpArray broadband seismic network in Europe are interference patterns caused by diffraction of surface waves at single small-scaled velocity anomalies. We use the observed pattern of Rayleigh waves from two earthquakes under the Southern Atlantic Ocean, and we fit this pattern with theoretical arrival angles derived by a simple modeling approach describing the interaction of a seismic wavefield with small anomalies. A grid search inversion scheme is implemented, which indicates that the anomaly is located in Central Africa, with its head under Cameroon. Moreover, the inversion enables the characterization of the anomaly The anomaly is inferred to be between 320 and 420 km wide, matching in length the 2,500 km long upper mantle low-velocity region under the volcano-capped swells of the Cameroon volcanic line. We show that this approach can be generally used for studying the upper mantle anomalies worldwide.The Mars Science Laboratory (MSL) Curiosity rover is exploring the Murray formation, a sequence of heterolithic mudstones and sandstones recording fluvial deltaic and lake deposits that comprise over 350 m of sedimentary strata within Gale crater. We examine >4,500 Murray formation bedrock points, employing recent laboratory calibrations for ChemCam laser-induced breakdown spectroscopy H measurements at millimeter scale. AZD3514 Bedrock in the Murray formation has an interquartile range of 2.3-3.1 wt.% H2O, similar to measurements using the Dynamic Albedo of Neutrons and Sample Analysis at Mars instruments. However, specific stratigraphic intervals include high H targets (6-18 wt.% H2O) correlated with Si, Mg, Ca, Mn, or Fe, indicating units with opal, hydrated Mg sulfates, hydrated Ca sulfates, Mn-enriched units, and akageneite or other iron oxyhydroxides, respectively. One stratigraphic interval with higher hydrogen is the Sutton Island unit and Blunts Point unit contact, where higher hydrogen is associated with Fe-rich, Ca-rich, and Mg-rich points. A second interval with higher hydrogen occurs in the Vera Rubin ridge portion of the Murray formation, where higher hydrogen is associated with Fe-rich, Ca-rich, and Si-rich points. We also observe trends in the H signal with grain size, separate from chemical variation, whereby coarser-grained rocks have higher hydrogen. Variability in the hydrogen content of rocks points to a history of water-rock interaction at Gale crater that included changes in lake water chemistry during Murray formation deposition and multiple subsequent groundwater episodes.Comprehensive analysis of remote sensing data used to select the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) landing site correctly predicted the atmospheric temperature and pressure profile during entry and descent, the safe landing surface, and the geologic setting of the site. The smooth plains upon which the InSight landing site is located were accurately predicted to be generally similar to the Mars Exploration Rover Spirit landing site with relatively low rock abundance, low slopes, and a moderately dusty surface with a 3-10 m impact fragmented regolith over Hesperian to Early Amazonian basaltic lava flows. The deceleration profile and surface pressure encountered by the spacecraft during entry, descent, and landing compared well (within 1σ) of the envelope of modeled temperature profiles and the expected surface pressure. Orbital estimates of thermal inertia are similar to surface radiometer measurements, and materials at the surface are dominated by poorly consolidated sand as expected. Thin coatings of bright atmospheric dust on the surface were as indicated by orbital albedo and dust cover index measurements. Orbital estimates of rock abundance from shadow measurements in high-resolution images and thermal differencing indicated very low rock abundance and surface counts show 1-4% area covered by rocks. Slopes at 100 to 5 m length scale measured from orbital topographic and radar data correctly indicated a surface comparably smooth and flat as the two smoothest landing sites (Opportunity and Phoenix). Thermal inertia and radar data indicated the surface would be load bearing as found.

Facebook Pagelike Widget

Who’s Online

Profile picture of Finch Hanley
Profile picture of Justesen Hull
Profile picture of Tarp Salas
Profile picture of Padgett MacDonald
Profile picture of Medlin Cochrane
Profile picture of Abildtrup Bagge