-
Winkel Hyde posted an update 10 hours, 25 minutes ago
The potential of carbonyl-stabilized phosphonium ylides as ligands for novel catalysis was explored. We found that the combination of phosphonium ylides and metal halide salts efficiently catalyzed the reaction of epoxides with carbon dioxide under mild conditions. Five-membered cyclic carbonates, including disubstituted cyclic carbonates, were obtained in good yields with the use of 1 atm of carbon dioxide at 35 °C. Terminal epoxides could be converted to N-aryl oxazolidinones in the reaction with isocyanates under a similar catalytic system.A readily available stereodynamic and the electronic circular dichroism (ECD)-silent 2,5-di(1-naphthyl)-terephthalaldehyde-based probe has been applied for chirality sensing of primary amines. The chiral amine (the inductor) forces a change in the structure of the chromophore system through the point-to-axial chirality transmission mechanism. As a result, efficient induction of optical activity in the chromophoric system is observed. The butterflylike structure of the probe, with the terminal aryl groups acting as changeable “wings”, allowed for the generation of exciton Cotton effects in the region of 1Bb electronic transition in the naphthalene chromophores. The sign of the exciton couplets observed for inductor-reporter systems might be correlated with an absolute configuration of the inductor, whereas the linear relationship between amplitudes of the specific Cotton effect and enantiomeric excess of the parent amine gives potentiality for quantitative chirality sensing. Despite the structural simplicity, the probe turned out to be unprecedentedly highly sensitive to even subtle differences in the inductor structure (i.e., O vs CH2).An asymmetric intramolecular Rauhut-Currier reaction of linear bis(enones) has been achieved via double activation catalysis of thiols and phase transfer substances, furnishing both enantioenriched cyclohexene and cyclopentene derivatives (up to 95% ee). Furthermore, the desymmetric version of prochiral substrates was developed under similar catalysis, producing the frameworks bearing an additional tertiary or even quaternary stereogenic center with moderate to excellent diastereo- and enantioselectivity (up to 95% ee, >191 dr).We report the synthesis of a series of bis-functionalized β-peptoid oligomers of the hexamer length. This was achieved by synthesizing and incorporating protected amino- or azido-functionalized chiral building blocks into precursor oligomers by a trimer segment coupling strategy. The resulting hexamers were readily elaborated to provide target compounds displaying amino groups, carboxy groups, hydroxy groups, or triazolo-pyridines, which should enable metal ion binding. Analysis of the novel hexamers by circular dichroism (CD) spectroscopy and 1H-13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopy revealed robust helical folding propensity in acetonitrile. CD analysis showed a solvent-dependent degree of helical content in the structural ensembles when adding different ratios of protic solvents including an aqueous buffer. These studies were enabled by a substantial increase in solubility compared to previously analyzed β-peptoid oligomers. This also allowed for the investigation of the effect of pH on the folding propensity of the amino- and carboxy-functionalized oligomers, respectively. Interestingly, we could show a reversible effect of sequentially adding acid and base, resulting in a switching between compositions of folded ensembles with varying helical content. We envision that the present discoveries can form the basis for the development of functional peptidomimetic materials responsive to external stimuli.Transition metal oxide nanocrystals with dual-mode electrochromism hold promise for smart windows enabling spectrally selective solar modulation. We have developed the colloidal synthesis of anisotropic monoclinic Nb12O29 nanoplatelets (NPLs) to investigate the dual-mode electrochromism of niobium oxide nanocrystals. The precursor for synthesizing NPLs was prepared by mixing NbCl5 and oleic acid to form a complex that was subsequently heated to form an oxide-like structure capped by oleic acid, denoted as niobium oxo cluster. By initiating the synthesis using niobium oxo clusters, preferred growth of NPLs over other polymorphs was observed. Ipatasertib The structure of the synthesized NPLs was examined by X-ray diffraction in conjunction with simulations, revealing that the NPLs are monolayer monoclinic Nb12O29, thin in the [100] direction and extended along the b and c directions. Besides having monolayer thickness, NPLs show decreased intensity of Raman signal from Nb-O bonds with higher bond order when compared to bulk monoclinic Nb12O29, as interpreted by calculations. Progressive electrochemical reduction of NPL films led to absorbance in the near-infrared region (stage 1) followed by absorbance in both the visible and near-infrared regions (stage 2), thus exhibiting dual-mode electrochromism. The mechanisms underlying these two processes were distinguished electrochemically by cyclic voltammetry to determine the extent to which ion intercalation limits the kinetics, and by verifying the presence of localized electrons following ion intercalation using X-ray photoelectron spectroscopy. Both results support that the near-infrared absorption results from capacitive charging, and the onset of visible absorption in the second stage is caused by ion intercalation.Cryogenic electron microscopy (cryo-EM) was the basis for the 2017 Nobel Prize in Chemistry for its profound impact on the field of structural biology by freezing and stabilizing fragile biomolecules for near atomic-resolution imaging in their native states. Beyond life science, the development of cryo-EM for the physical sciences may offer access to previously inaccessible length scales for materials characterization in systems that would otherwise be too sensitive for high-resolution electron microscopy and spectroscopy. Weakly bonded and reactive materials that typically degrade under electron irradiation and environmental exposure can potentially be stabilized by cryo-EM, opening up exciting opportunities to address many central questions in materials science. New discoveries and fundamental breakthroughs in understanding are likely to follow. In this Perspective, we identify six major areas in materials science that may benefit from the interdisciplinary application of cryo-EM (1) batteries, (2) soft polymers, (3) metal-organic frameworks, (4) perovskite solar cells, (5) electrocatalysts, and (6) quantum materials.