-
Moreno Tilley posted an update 1 day, 11 hours ago
In Egypt, circulatory system diseases are responsible for one-third of the annual deaths. Stroke comes 3rd after heart diseases and liver diseases. Stroke includes two types ischemic and hemorrhagic. PD173212 manufacturer The sirtuins (SIRTs) are a family of histone deacetylases that are nicotinamide adenine dinucleotide (NAD)
dependent. They are activated under conditions of decreased cellular energy stores and are involved in the control of several physiological processes.
To measure theplasma levels of SIRT1 in acute cerebrovascular stroke, toassess its role as a possible biomarker inpredicting the risk of acute cerebrovascular stroke, to compare its levels between the two groups of stroke patients, and to evaluate the association between its levels and the severity of stroke. Also, to assess the correlations between the plasma SIRT1 levels and thevariables that might play a role in the severity of acute cerebrovascular stroke.
This is a case-control study carried out on one hundred and eight participants. The participals of SIRT1 are lower in patients with acute cerebrovascular stroke than in control. Furthermore, SIRT1 may act as a possible biomarker for predicting the risk of acute cerebrovascular stroke.Nowadays, workers in petrochemical industry might be exposed to organic volatile compounds, including benzene, toluene, ethylbenzene, and xylene (BTEX). The aim of this study was to investigate the concentration of BTEX contaminations and the biological index in employees of petrochemical sites in the west of Iran. The study was conducted as a cross-sectional study on 30 stations and 60 inhalation and biological samples collected in winter and summer. The NIOSH 2549 and 1501 methods were used for sampling and analyzing the inhaled samples. Gas chromatography-mass spectrometry (GC-MS) equipped with flame ionization detector and high-performance liquid chromatography (HPLC) was used to measure the volatile contaminations. The results showed that the mean concentrations of benzene, toluene, and xylene were significantly different in summer and winter. Significant and strong correlations were observed between the concentrations of benzene, toluene, and xylene and the biological values (r > 0.7). Moreover, the concentration of benzene (β = 0.836), toluene (β = 0.718), and xylene (β = 0.786) predicted the changes in their biological values. Given the hazardous concentrations of benzene and toluene in industrial plants and the correlation of the concentration levels and biological values, management and control strategies should be implemented to eliminate and reduce the pollutants and the effects.Accurate estimation and control of greenhouse gas emissions have been recognized as imperative in recent years. Therefore, frequent investigations under uniform environmental conditions are required to better understand this concept. Thus, six sampling sites with characteristic concentrations of nitrogen and other water quality parameters were selected to investigate the behavior of water quality parameters throughout the year and to statistically examine the correlations among the parameters. Dissolved nitrous oxide (D-N2O) showed the highest positive correlation coefficient with NO2-N among nitrogen species. The results of the principal component analysis suggested that river water quality could be broadly classified based on photosynthesis and contamination from treated wastewater. Photosynthesis caused an increase in pH, with concomitant decrease in D-N2O concentration. Using the results of multiple regression analysis, D-N2O was accurately estimated based on nitrogen concentration, pH, and concentration of organic matter in various situations. The results of a detailed survey suggested that D-N2O was produced in the river from nitrogen sources released from the wastewater treatment plant. The main roles of the wastewater treatment plant for D-N2O behavior in the river were the supply of the nitrogen source that was the precursor of D-N2O, the supply of the nutrients that induced the photosynthesis, and the direct supply of D-N2O at a low water temperature. The models based on multiple regression analysis could efficiently predict the D-N2O concentration produced in rivers at sites downstream of the wastewater treatment plant, except for the direct supply of D-N2O as an effluent at low water temperature.A variety of pathogenic microorganisms can survive in the drinking water distribution systems (DWDS) by forming stable biofilms and, thus, continually disseminating their population through the system’s dynamic water bodies. The ingestion of the pathogen-contaminated water could trigger a broad spectrum of illnesses and well-being-related obstacles. These waterborne diseases are a significant concern for babies, pregnant women, and significantly low-immune individuals. This review highlights the recent advances in understanding the microbiological aspects of drinking water quality, biofilm formation and its dynamics, health issues caused by the emerging microbes in biofilm, and approaches for biofilm investigation its prevention and suppression in DWDS.The Republic of Azerbaijan suffers from low agricultural productivity caused by soil salinization and erosion, and limited and insufficient soil data are available for economic and political reasons. In this study, soil salinity and heavy metal levels were assessed. Environmental risk assessment was conducted to evaluate the potential risk posed by soils to human health. Soil guideline values were proposed to monitor soil pollution in the Republic of Azerbaijan. Water extraction and spatial variability analysis were conducted to understand soil salinization and heavy metal pollution. Among the 20 studied elements, the elements Ca, Cl, and S and the heavy metals Cr, Ni, and Pb were classified as problematic on the basis of the geoaccumulation index, and As was also identified as posing a possible risk on the basis of the potential ecological risk index. Based on the developed soil guideline values for agricultural soil, the As, Cr, and Ni in the soil samples exceeded their respective guidelines by 31.3, 41.8, and 61.