Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Morton Harrington posted an update 10 hours, 2 minutes ago

    The algorithm was tested qualitatively and quantitatively on a dataset composed of 150 ears. The qualitative evaluation was performed with the collaboration of medical staff and the quantitative tests were performed using manually annotated ground truth data.

    Second primary malignancy in patients with papillary thyroid carcinoma after Chernobyl accident is an emerging problem. The aims of the study are to investigate the rates and distribution of second primary malignant tumours in Belarus survivors of post-Chernobyl papillary thyroid carcinoma and the cumulative rate of developing a second primary malignancy in a group of patients with metachronous second primaries.

    Patients aged 18 or younger at the time of Chernobyl accident who were diagnosed with papillary thyroid carcinoma after 1986 were identified from the Belarus Cancer Registry. The clinical and demographic of these patients were analysed to correlate with the factors for the development of secondary primary cancer.

    Secondary primary cancer was detected in 1.8 % (119 of 6559) of the patients with papillary thyroid carcinoma. The cumulative incidence tended to rise with increasing age of the cohort and varied depending on the sex of patients. In female patients, breast carcinoma and genital tract ca for patients with papillary thyroid carcinoma after Chernobyl accident.Hypoxia has been firmly correlated to the drug resistance of solid tumors. Alleviation of hypoxia by tumor reoxygenation is expected to sensitize the chemotherapy toward solid tumors. Alternatively, ferroptosis provides a therapeutic strategy to overcome apoptotic resistance and multidrug resistance of solid tumors, collaboratively strengthening the chemotherapy toward hypoxic tumors. Herein, an ultrasound (US)-activatable nanomedicine was developed for overcoming hypoxia-induced resistance to chemotherapy and efficiently inhibiting tumor growth by inducing sensitized apoptosis and collaborative ferroptosis of tumor cells. This nanomedicine was constructed by integrating ferrate and doxorubicin into biocompatible hollow mesoporous silica nanoplatforms, followed by assembling a solid-liquid phase-change material of n-heneicosane. The US-induced mild hyperthermia initiates the phase change of n-heneicosane, enabling US-activated co-release of ferrate and doxorubicin. Results reveal that the released ferrate effditionally, the nanomedicine acts as a nanoprobe for in vivo photoacoustic imaging and glutathione tracking, showing great potential as theranostic agents for hypoxic solid tumors treatment.Nanocarrier-based drug delivery systems hold impressive promise for biomedical application because of their excellent water dispersibility, prolonged blood circulation time, increased drug accumulation in tumors, and potential in combination therapeutics. However, most nanocarriers suffer from low drug-loading efficiency, poor therapeutic effectiveness, potential systematic toxicity, and unstable metabolism. As an alternative, carrier-free nanodrugs, completely formulated with one or more drugs, have attracted increasing attention in cancer therapy due to their advantage of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug-loading. find more In recent years, carrier-free nanodrugs have contributed to progress in a variety of therapeutic modalities. In this review, different common strategies for carrier-free nanodrugs preparation are first summarized, mainly including nanoprecipitation, template-assisted nanoprecipitation, thin-film hydration, spray-drying technique, supercritical fluid (SCF) technique, and wet media milling. Then we describe the recently reported carrier-free nanodrugs for cancer chemo-monotherapy or combination therapy. The advantages of anti-cancer drugs combined with other chemotherapeutic, photosensitizers, photothermal, immunotherapeutic or gene drugs have been demonstrated. Finally, a future perspective is introduced to highlight the existing challenges and possible solutions toward clinical application of currently developed carrier-free nanodrugs, which may be instructive to the design of effective carrier-free regimens in the future.Hydrogels with tunable mechanical properties have provided a tremendous opportunity to regulate stem cell differentiation. Hydrogels with osteoid (about 30-40 kPa) or higher stiffness are usually required to induce the osteogenic differentiation of mesenchymal stem cells (MSCs). It is yet difficult to achieve the same differentiation on very soft hydrogels, because of low environmental mechanical stimuli and restricted cellular mechanotransduction. Here, we modulate cellular spatial sensing of integrin-adhesive ligands via quasi-hexagonally arranged nanopatterns to promote cell mechanosensing on hydrogels having low stiffness (about 3 kPa). The increased interligand spacing has been shown to regulate actomyosin force loading to recruit extra integrins on soft hydrogels. It therefore activates mechanotransduction and promotes the osteogenic differentiation of MSCs on soft hydrogels to the level comparable with the one observed on osteoid stiffness. Our work opens up new possibilities for the design of biomaterials and tissue scaffolds for regenerative therapeutics.Acute liver failure (ALF) is a severe liver disease with high mortality rate. Inflammasome is a newly-found and promising target for effective treatment of immunity-associated diseases including liver disease, and dopamine has recently been proved as an inhibitor for NLRP3 inflammasome. This work demonstrates a diselenide-based nanodrug for ALF treatment through inhibiting NLRP3 inflammasome activation and enhancing liver regeneration. A diselenide-containing molecule (DSeSeD) has been synthesized via covalently linking two l-Dopa molecules to a diselenide linker, and the resultant molecules form stable nanoparticles in aqueous media and encapsulate SW033291 (an inhibitor of prostaglandin-degrading enzyme that hampers liver regeneration) to produce the nanodrug (SW@DSeSeD). As a nanoscale prodrug, SW@DSeSeD protects its payloads from decomposition in bloodstream upon administration, accumulates in liver of ALF mice, then responds to the overexpressed ROS and thereby releases SW033291 as well as a stable dopamine precursor that can transform into dopamine in hepatic cells, thus achieving significant therapeutic efficacy against ALF through inhibiting NLRP3 inflammasome activation and enhancing hepatic regeneration.

Facebook Pagelike Widget

Who’s Online

Profile picture of Frederick Fox
Profile picture of Dreyer Spencer
Profile picture of Faulkner Fox
Profile picture of McGarry Simpson
Profile picture of Farah Pilegaard
Profile picture of Munksgaard Duran
Profile picture of Johnsen Bigum
Profile picture of Grantham McDermott
Profile picture of Lauridsen McCollum