Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Ebbesen Fallon posted an update 2 weeks, 6 days ago

    v. calcium infusion, in addition to oral calcium and activated vitamin D. Trometamol molecular weight Histopathological examination identified an angioinvasive parathyroid carcinoma with global loss of parafibromin (protein encoded by CDC73/HRPT2).HRpQCT and DXA studies were obtained prior to surgery and 18-months postsurgery. HRpQCT showed a resolution of osteolytic lesions combined with structural improvement of cortical porosity and an increase in both cortical thickness and density compared with levels prior to treatment. These findings highlight the added value of HRpQCT in primary hyperparathyroidism. In addition to our case, we have provided a review of the published cases of parathyroid cancer in children. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.Prolonged reduction in weightbearing causes bone loss. Disuse of bone is associated with recovery from common musculoskeletal injury and trauma, bed rest resulting from various medical conditions, and spaceflight. The hindlimb-suspension rodent model is popular for simulating unloading and disuse. We hypothesized that controlled mechanical loading of the tibia would protect against bone loss occurring from concurrent disuse. Additionally, we hypothesized that areas of high mechanical peak strains (midshaft) would provide more protection than areas of lower strain (distal shaft). Adult C57BL6/J mice were suspended for 3 weeks, with one limb subjected to tibial compression four times per week. μCT imaging was completed at days 0, 11, and 21, in addition to serum analysis. Significant bone loss caused by hindlimb suspension was detected in trabecular bone by day 11 and worsened by day 21 (p  less then  0.05). Bone loss was also detected in cortical thickness and area fraction by day 21. However, four short bouts. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.The integrity of the skeleton is maintained by the coordinated and balanced activities of the bone cells. Osteoclasts resorb bone, osteoblasts form bone, and osteocytes orchestrate the activities of osteoclasts and osteoblasts. A variety of in vitro approaches has been used in an attempt to reproduce the complex in vivo interactions among bone cells under physiological as well as pathological conditions and to test new therapies. Most cell culture systems lack the proper extracellular matrix, cellular diversity, and native spatial distribution of the components of the bone microenvironment. In contrast, ex vivo cultures of fragments of intact bone preserve key cell-cell and cell-matrix interactions and allow the study of bone cells in their natural 3D environment. Further, bone organ cultures predict the in vivo responses to genetic and pharmacologic interventions saving precious time and resources. Moreover, organ cultures using human bone reproduce human conditions and are a useful tool to test patient responses to therapeutic agents. Thus, these ex vivo approaches provide a platform to perform research in bone physiology and pathophysiology. In this review, we describe protocols optimized in our laboratories to establish ex vivo bone organ cultures and provide technical hints and suggestions. In addition, we present examples on how this technical approach can be employed to study osteocyte biology, drug responses in bone, cancer-induced bone disease, and cross-talk between bone and other organs © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.Neuronal control of skeletal muscle bioactuators represents a critical milestone toward the realization of future biohybrid machines that may generate complex motor patterns and autonomously navigate through their environment. Animals achieve these feats using neural networks that generate robust firing patterns and coordinate muscle activity through neuromuscular units. Here, we designed a versatile 3D neuron-muscle co-culture platform to serve as a test-bed for neuromuscular bioactuators. We used our platform in conjunction with microelectrode array electrophysiology to study the roles of synergistic interactions in the co-development of neural networks and muscle tissues. Our platform design enables co-culture of a neuronal cluster with up to four target muscle actuators, as well as quantification of muscle contraction forces. Using engineered muscle tissue targets, we first demonstrated the formation of functional neuromuscular bioactuators. We then investigated possible roles of long-range interactions in neuronal outgrowth patterns and observed preferential outgrowth toward muscles compared to the acellular matrix or fibroblasts, indicating muscle-specific chemotactic cues acting on motor neurons. Next, we showed that co-cultured muscle strips exhibited significantly higher spontaneous contractility as well as improved sarcomere assembly compared to muscles cultured alone. Finally, we performed microelectrode array measurements on neuronal cultures, which revealed that muscle-conditioned medium enhances overall neural firing rates and the emergence of synchronous bursting patterns. Overall, our study illustrates the significance of neuron-muscle cross talk for the in vitro development of neuromuscular bioactuators. © Author(s).Cells in a tumor microenvironment are exposed to spatial and temporal variations in oxygen tension due to hyperproliferation and immature vascularization. Such spatiotemporal oxygen heterogeneity affects the behavior of cancer cells, leading to cancer growth and metastasis, and thus, it is essential to clarify the cellular responses of cancer cells to oxygen tension. Herein, we describe a new double-layer microfluidic device allowing the control of oxygen tension and the behavior of cancer cells under spatiotemporal oxygen heterogeneity. Two parallel gas channels were located above the media and gel channels to enhance gas exchange, and a gas-impermeable polycarbonate film was embedded in the device to prevent the diffusion of atmospheric oxygen. Variations in oxygen tension in the device with the experimental parameters and design variables were investigated computationally and validated by using oxygen-sensitive nanoparticles. The present device can generate a uniform hypoxic condition at oxygen levels down to 0.

Facebook Pagelike Widget

Who’s Online

Profile picture of Stephansen Stephansen
Profile picture of Donaldson Bjerg
Profile picture of Pollock Beier
Profile picture of Welch Riber
Profile picture of Pallesen Almeida
Profile picture of Harrison McCarthy
Profile picture of Smidt Sinclair
Profile picture of Mccoy Mcdowell
Profile picture of Nicolaisen Grace
Profile picture of Self Sivertsen
Profile picture of McDermott Roman
Profile picture of Cummings Thomasen
Profile picture of Mcpherson Bendtsen
Profile picture of Cunningham Hodges
Profile picture of Brinch Mohr