-
Batchelor Lausen posted an update 1 day, 14 hours ago
We have designed two mitochondria targetable probes P-Py and P-An by the π-conjugation of polyaromatic hydrocarbons (pyrene vs. anthracene) with 4-dimethylamino pyridinium. They present an amphiphilic property with excellent solubility in the common polar and non-polar solvents. Both of them demonstrated a significant fluorescence response to bisulfite in Tris-HCl buffer solutions (5 mM, pH = 7.4). By a combination of fluorescence, UV-vis, time-resolved emission, 1H NMR, and ESI-MS, their sensing mechanisms have been elaborated to be a Michael addition. Notably, P-Py also exhibits a sensitivity to the viscosity change with a Stokes shift of 140 nm, due to the restriction of C-C bond rotation. By taking advantages of its good water solubility, low toxicity, and high mitochondrial target, the dual responses of P-Py to exogenous SO2 derivatives and viscosity change in mitochondria were explored by confocal fluorescence microscopy.Quantitative changes in expression level of 5HT1A are somewhere related to common neurological disorders such as anxiety, major depression and schizophrenia. We have designed EDTA conjugated SPECT imaging probe for localization of 5HT1A receptor in brain. For designing SPECT probe we have employed the concept of bivalent approach and a homodimeric system with desirable pharmacokinetics of 5HT1A imaging. 99mTc-EDHT was also evaluated for its stability through serum stability assay and glutathione challenge experiment. Biodistribution study showed the highest accumulation of radioactivity in kidney which depicted the renal mode of excretion from the body. However in brain the uptake of 1.21% ID per gram was observed in initial 5 min of drug administration. On blocking the receptor this percent get decreased to 0.97% ID per gram. The regional distribution in brain was also performed which showed the accumulation of drug in cerebellum, cortex and hippocampus part, which are already known for 5HT1A expression. Dynamic study in rabbit is also in support of results derived from biodistribution and blood kinetics experiment. These finding suggest that 99mTc-EDHT holds promising place for further optimization before nuclear medicine applications in different animal species.The inclusion of fungi in recent human and animal microbiome studies has revealed that microbiome features associated with health or disease are not exclusively bacterial. Factors known to impact bacterial microbiome development, such as gestational age at birth, breast feeding status and antibiotics also impact the mycobiome. Strong inter-kingdom interactions take place in the luminal gut, and while the mycobiome exhibits increased inter-individual variability, certain fungi are stable colonizers. Here, we review recent studies showing that the gut mycobiome also plays an important role in disease states related to host immunity and energy metabolism. Some persistent species, such as Candida sp., as well as other less stable colonizers have been shown to play an important role in host-mycobiome immune cross talk. Mechanisms by which gut fungi interact with immune development have begun to be elucidated yet the majority remain elusive. Further investigation into these immune and metabolic mechanisms hold great potential for novel discoveries and will provided a much needed multi-kingdom understanding of the microbiome’s influence on host health.
Post COVID-19 seizures are relatively rare. The aim of the present study was to estimate the frequency of acute symptomatic seizures among patients with COVID-19 and to discuss possible pathophysiological mechanisms.
Out of 439 cases with COVID-19 that were admitted to Assiut and Aswan University hospitals during the period from 1 June to 10 August 2020, 19 patients (4.3 %) presented with acute symptomatic seizures. Each patient underwent computed tomography (CT) or magnetic resonance imaging (MRI) of the brain and conventional electroencephalography (EEG). Laboratory investigations included blood gases, complete blood picture, serum D-Dimer, Ferritin, C-reactive protein, renal and liver functions, and coagulation profile.
Of the 19 patients, 3 had new onset seizures without underlying pathology (0.68 % out of the total 439 patients); 2 others (0.46 %) had previously diagnosed controlled epilepsy with breakthrough seizures. The majority of cases (14 patients, 3.19 %) had primary pathology that could explain the occurrence of seizures 5 suffered a post COVID-19 stroke (3 ischemic and 2 hemorrhagic stroke); 6 patients had COVID-related encephalitis; 2 patients were old ischemic stroke patients; 1 patient had a brain tumor and developed seizures post COVID-19.
acute symptomatic seizure is not a rare complication of post COVID-19 infection. Both new onset seizures and seizures secondary to primary brain insult (post COVID encephalitis or recent stroke) were observed.
acute symptomatic seizure is not a rare complication of post COVID-19 infection. Both new onset seizures and seizures secondary to primary brain insult (post COVID encephalitis or recent stroke) were observed.
The present study aims to investigate the disturbance of functional and structural profiles of patients with generalized tonic-clonic seizures (GTCS).
Resting-state fMRI and diffusion tensor imaging (DTI) data was collected from fifty-six patients and sixty-two healthy controls. Degree centrality (DC) of functional connectivity was first calculated and compared between groups using a two-sample t-test. Furthermore, the regions with significant alteration of DC in patients with GTCS were used as nodes to construct the brain network. Functional connectivity (FC) network was constructed using the Person’s correlation analysis and structural connectivity (SC) network was obtained using deterministic tractography technology. learn more Gray matter volume (GMV) and cortical thickness (CT) were computed and correlated with connective profiles.
The patients with GTCS showed increased DC in the primary network (PN), including bilateral precentral gyrus, supplementary motor areas (SMA), and visual cortex, and decreased DC ially the motor abnormality in GTCS. The hypo-connectivity within DMN suggested abnormal network organization possibly related to epileptogenesis. Moreover, over-interaction between DMN and PN and unbalanced connectivity between them and insula provided potential evidence reflecting abnormal interactions between primary and high-order function systems.
Hyper-connectivity within PN helps to understand the disturbance of primary functions, especially the motor abnormality in GTCS. The hypo-connectivity within DMN suggested abnormal network organization possibly related to epileptogenesis. Moreover, over-interaction between DMN and PN and unbalanced connectivity between them and insula provided potential evidence reflecting abnormal interactions between primary and high-order function systems.