-
Rasch Riise posted an update 3 weeks ago
Our findings have important implications for DNA biology and nanotechnology. Overrepresentation of sequences able to form PGHs in the evolutionary-conserved regions of the human genome implies their functionally important biological role(s).Genome-wide localization of chromatin and transcription regulators can be detected by a variety of techniques. Here, we describe a novel method ‘greenCUT&RUN’ for genome-wide profiling of transcription regulators, which has a very high sensitivity, resolution, accuracy and reproducibility, whilst assuring specificity. Our strategy begins with tagging of the protein of interest with GFP and utilizes a GFP-specific nanobody fused to MNase to profile genome-wide binding events. By using a GFP-nanobody the greenCUT&RUN approach eliminates antibody dependency and variability. Robust genomic profiles were obtained with greenCUT&RUN, which are accurate and unbiased towards open chromatin. By integrating greenCUT&RUN with nanobody-based affinity purification mass spectrometry, ‘piggy-back’ DNA binding events can be identified on a genomic scale. The unique design of greenCUT&RUN grants target protein flexibility and yields high resolution footprints. In addition, greenCUT&RUN allows rapid profiling of mutants of chromatin and transcription proteins. In conclusion, greenCUT&RUN is a widely applicable and versatile genome-mapping technique.
To examine the relationship between plasma glucagon levels and insulin sensitivity and insulin secretion in obese subjects.
Suppression of plasma glucagon was examined in 275 obese Hispanic Americans with varying glucose tolerance. All subjects received a 2-hour oral glucose tolerance test (OGTT) and a subset (n = 90) had euglycemic hyperinsulinemic clamp. During OGTT, we quantitated suppression of plasma glucagon concentration, Matsuda index of insulin sensitivity, and insulin secretion/insulin resistance (disposition) index. Plasma glucagon suppression was compared between quartiles of insulin sensitivity and beta-cell function.
Fasting plasma glucagon levels were similar in obese subjects with normal glucose tolerance (NGT), prediabetes, and type 2 diabetes (T2D), but the fasting glucagon/insulin ratio decreased progressively from NGT to prediabetes to T2D (9.28 ± 0.66 vs 6.84 ± 0.44 vs 5.84 ± 0.43; P < 0.001). Fasting and 2-hour plasma glucagon levels during OGTT progressively increased and correlated positively with severity of insulin resistance (both Matsuda index and euglycemic hyperinsulinemic clamp). The fasting glucagon/insulin ratio declined with worsening insulin sensitivity and beta-cell function, and correlated with whole-body insulin sensitivity (Matsuda index, r = 0.81; P < 0.001) and beta-cell function (r = 0.35; P < 0.001). The glucagon/insulin ratio also correlated and with beta-cell function during OGTT at 60 and 120 minutes (r = -0.47; P < 0.001 and r = -0.32; P < 0.001).
Insulin-mediated suppression of glucagon secretion in obese subjects is impaired with increasing severity of glucose intolerance and parallels the severity of insulin resistance and beta-cell dysfunction.
Insulin-mediated suppression of glucagon secretion in obese subjects is impaired with increasing severity of glucose intolerance and parallels the severity of insulin resistance and beta-cell dysfunction.A phase retrieval technique based on a transport of intensity equation (TIE) is one of the defocus series reconstruction techniques in microscopy. Since it does not require any dedicated devices like a biprism, and only three defocus images are enough to retrieve phase information, it has been applied to observe magnetic fields, magnetic domains, electrostatic potentials and strains. find more It is also used to improve image resolution by correcting spherical aberration. This technique is simple and easy to use, but some artifacts often appear in the retrieved phase map. One should pay careful attention to the experimental conditions and the algorithms and boundary conditions used to solve the TIE. This paper reviews the principle of the TIE method, the algorithms used to solve it and application results in materials science.
While previous studies indicate that the zonae reticularis (ZR) and glomerulosa (ZG) diminish with aging, little is known about age-related transformations of the zona fasciculata (ZF).
To investigate the morphological and functional changes of the adrenal cortex across adulthood, with emphasis on (i) the understudied ZF and (ii) sexual dimorphisms.
We used immunohistochemistry to evaluate the expression of aldosterone synthase (CYP11B2), visinin-like protein 1 (VSNL1), 3β-hydroxysteroid dehydrogenase type II (HSD3B2), 11β-hydroxylase (CYP11B1), and cytochrome b5 type A (CYB5A) in adrenal glands from 60 adults (30 men), aged 18 to 86. Additionally, we employed mass spectrometry to quantify the morning serum concentrations of cortisol, 11-deoxycortisol (11dF), 17α-hydroxyprogesterone, 11-deoxycorticosterone, corticosterone, and androstenedione in 149 pairs of age- and body mass index-matched men and women, age 21 to 95 years.
The total cortical area was positively correlated with age (r = 0.34, P = 0.008). Both the total (VSNL1-positive) and functional ZG (CYP11B2-positive) areas declined with aging in men (r = -0.57 and -0.67, P < 0.01), but not in women. The CYB5A-positive area declined with age in both sexes (r = -0.76, P < 0.0001). In contrast, the estimated ZF area correlated positively with age in men (r = 0.59, P = 0.0006) and women (r = 0.49, P = 0.007), while CYP11B1-positive area remained unchanged across ages. Serum cortisol, corticosterone, and 11-deoxycorticosterone levels were stable across ages, while 11dF levels increased slightly with age (r = 0.16, P = 0.007).
Unlike the ZG and ZR, the ZF and the total adrenal cortex areas enlarge with aging. An abrupt decline of the ZG occurs with age in men only, possibly contributing to sexual dimorphism in cardiovascular risk.
Unlike the ZG and ZR, the ZF and the total adrenal cortex areas enlarge with aging. An abrupt decline of the ZG occurs with age in men only, possibly contributing to sexual dimorphism in cardiovascular risk.