-
Ellison Bright posted an update 2 days, 1 hour ago
re authorization, authentication, and message integrity. This platform simplifies the reporting of PCR SARS-CoV-2 tests and reduces the time and probability of mistakes in counting positive cases. The interoperable solution with FHIR is working successfully and is open for the community, laboratories, and any institution that needs to report PCR SARS-CoV-2 tests.
The platform was implemented and is currently being used by UC Christus Laboratory. The platform is secure. It was tested adequately for confidentiality, secure authorization, authentication, and message integrity. This platform simplifies the reporting of PCR SARS-CoV-2 tests and reduces the time and probability of mistakes in counting positive cases. The interoperable solution with FHIR is working successfully and is open for the community, laboratories, and any institution that needs to report PCR SARS-CoV-2 tests.
Internet hospitals in China are being rapidly developed as an innovative approach to providing health services. The ongoing COVID-19 pandemic has triggered the development of internet hospitals that promote outpatient service delivery to the public via internet technologies. To date, no studies have assessed China’s internet hospitals during the COVID-19 pandemic.
This study aimed to elucidate the characteristics of China’s internet hospitals and assess the health service capacity of these hospitals.
Data on 711 internet hospitals were collected from official websites, the WeChat (Tencent Inc) platform, smartphone apps, and the Baidu search engine until July 16, 2020.
As of July 16, 2020, 711 internet hospitals were developed in mainland China. More than half of these internet hospitals (421/711, 59.2%) were established during 2019 (206/711, 29%) and 2020 (215/711, 30.2%). Furthermore, about one-third (215/711, 30.2%) of internet hospitals were established at the beginning of 2020 as an emergency resp including medical prescription, drug delivery, and medical insurance services.
The dramatic increase of internet hospitals in China has played an important role in the prevention and control of COVID-19. Internet hospitals provide different and convenient medical services for people in need.
The dramatic increase of internet hospitals in China has played an important role in the prevention and control of COVID-19. Internet hospitals provide different and convenient medical services for people in need.Visual object tracking with semantic deep features has recently attracted much attention in computer vision. Especially, Siamese trackers, which aim to learn a decision making-based similarity evaluation, are widely utilized in the tracking community. However, the online updating of the Siamese fashion is still a tricky issue due to the limitation, which is a tradeoff between model adaption and degradation. To address such an issue, in this article, we propose a novel attentional transfer learning-based Siamese network (SiamATL), which fully exploits the previous knowledge to inspire the current tracker learning in the decision-making module. First, we explicitly model the template and surroundings by using an attentional online update strategy to avoid template pollution. Then, we introduce an instance-transfer discriminative correlation filter (ITDCF) to enhance the distinguishing ability of the tracker. Finally, we suggest a mutual compensation mechanism that integrates cross-correlation matching and ITDCF detection into the decision-making subnetwork to achieve online tracking. Comprehensive experiments demonstrate that our approach outperforms state-of-the-art tracking algorithms on multiple large-scale tracking datasets.In this article, we consider the formation tracking problem of nonholonomic multiagent systems only using relative bearing measurements between the agents. Such a practical and important yet challenging issue has been taken into limited consideration by existing approaches, which usually requires additional measurements such as relative positions. The contributions of this article are two-fold. First, a fully distributed reference velocity estimator is proposed. Under the proposed adaptive estimator, each agent can estimate the time-varying reference velocity asymptotically. Second, an input-to-state stable controller is designed according to the bearing rigid theory. Under the proposed controller, the formation with bearing-only constraints can be achieved. Quizartinib Target Protein Ligand chemical Finally, the proposed scheme is demonstrated and its effectiveness is verified by presenting some simulation and experimental tests.This article studies the problem of dissipativity-based asynchronous state estimation for a class of discrete-time Markov jump neural networks subject to randomly occurring nonlinearities, sensor saturations, and stochastic parameter uncertainties. First, two stochastic nonlinearities occurring in the system are described by statistical means and obey two Bernoulli processes independently. Then, the hidden Markov model is used to characterize the real communication environment closely between the designed estimator and the system model due to the networked-induced phenomenons that also lead to randomly occurring parametric uncertainties of the estimator considered modeled by two Bernoulli processes. A new criterion is established to guarantee that the resulting error system is stochastically stable with predefined dissipativity performance. Finally, we provide a simulation example to validate the theoretical analysis.In this article, by using the neural-networks (NNs) separation and approximation technique, an adaptive scheme is presented to deliver the prescribed tracking performance for a class of unknown nonaffine switched nonlinear time-delay systems. The nonaffine terms are indifferentiable and the controllability condition is not required for each subsystem, which allows the considered tracking problem to not be efficiently solved by the traditional adaptive control algorithms. To solve the problem, NNs are utilized to separate and approximate the nonaffine functions, and then the dynamic surface control and convex combination method are utilized to construct a controller and a switching strategy. In addition, an adaptive law is considered for each subsystem to reduce the conservativeness. Under the designed controller and switching strategy, all the signals of the resulting closed-loop system are bounded, and the tracking performance is achieved with a prescribed level.