Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Nyborg Bengtsen posted an update 2 days, 9 hours ago

    Bacterial cellulose (BC) is recognized as a wound dressing material well-suited for chronic wounds; however, it has no intrinsic antimicrobial activity. Further, the formation of biofilms can limit the effectiveness of the pre-saturation of BC with antimicrobial agents. Here, to hinder biofilm formation by P. aeruginosa, we immobilized the hydrolytic domain of PelA (a glycohydrolase involved in the synthesis of biofilm polysaccharide Pel) on the surface of BC. The immobilization of 32.35 ± 1.05 mg PelAh per g BC membrane resulted in an eight-fold higher P. aeruginosa cell detachment from BC membrane, indicating reduced biofilm matrix stability. Further, 1D and 2D infrared spectroscopy analysis indicated systematic reduction of polysaccharide biofilm elements, confirming the specificity of immobilized PelAh. Importantly, BC-PelAh was not cytotoxic towards L929 fibroblast cells. Thus, we conclude that PelAh can be used in BC wound dressings for safe and specific protection against biofilm formation by P. aeruginosa.With the advent of gel polymer electrolyte (GPE), a series of safety problems of lithium ion batteries have been resolved. However, poor self-standing property, the low ionic conductivity and Li+ transference number are still the obstacles that impede the practical application of GPE. Herein, a flexible and eco-friendly GPE is designed using allyl-modified cellulose with methylcellulose through simple UV curing. The crosslinked structure facilitates the integrity of GPE during use, and methylcellulose guarantees the high affinity to liquid electrolyte and improve interfacial compatibility. The specific polar functional groups (OH, OCH3 and COC) in GPE cooperate to enhance the lithium salt dissociation, anion immobilization and lithium ion transporting and enable the high Li+ transference number (0.902) and ion conductivity (4.36 × 10-3 S cm-1). The assembled Li/GPE/LiFePO4 coin cells possess high initial discharge capacity of 150.6 mA h g-1 and a high capacity retention of 91.6 % after 100 cycles.β-d-glucan is a natural non-digestible polysaccharide that can be selectively recognized by recognition receptors such as Dectin-1 receptors, resulting in an emerging interest on exploring its capacity for carrying biological information to desired organs or cells. CpG oligodeoxynucleotide (ODN) has the potentiality to initiate an immune-stimulatory cascade via activating B cells inducing proinflammatory cytokines, which is conducive to immunotherapy and nucleic acid vaccine. Herein, we developed a pH-sensitive delivery system loading with CpG ODN by introducing poly-ethylenimine (PEI) to a hyperbranched β-d-glucan (HBB) and coating with poly-ethylene glycol (PEG) shell via acidic liable Schiff bond. This delivery system exhibited a favorable biocompatibility and facilitated the cellular uptake of CpG ODN at pH 6.8 with the possibility of having higher accumulation in acidic cancer microenvironment. Furthermore, this carrier together with class B CpG ODN could enhance the secretion of cytokines including interleukin-6 and interferon-α as well as capable of interferon-α induction.In this study, a water-soluble polysaccharide (BSP) was extracted and purified from pseudobulb of Bletilla striata. The preliminary structure and gastroprotective activity of BSP were analyzed. Results indicate that BSP is a glucomannan with a molar ratio of 7.452.55 (ManGlc), and its molecular weight is approximately 1.7 × 105 Da. BSP displayed outstanding protective action against ethanol-induced GES-1 cell injury in vitro, as well as, excellent gastroprotective activity in vivo. Especially, a high-dose of BSP (100 mg/kg) could reduce the ulcer index of the gastric mucosa and increase the percentage of ulcer inhibition, which possibly caused by enhancing the antioxidant capacity and inhibiting the apoptotic pathway in gastric tissue. Interestingly, BSP exhibited a comparative gastroprotective activity to that of positive control (omeprazole). In summary, our results indicated that BSP could be considered as a potential supplement for the prevention of gastric injury.In this report, we investigated the physical conditions for creating pectin polymer-polymer (homopolymer) entanglement. The potential role of water movement in creating pectin entanglement was investigated by placing water droplets-equivalent to the water content of two gel phase films-between two glass phase films and compressing the films at variable probe velocities. Slow probe velocity (0.5 mm/sec) demonstrated no significant debonding. Corresponding videomicroscopy demonstrated an occasional water bridge, but no evidence of stranding or polymer entanglement. Selleckchem LY411575 In contrast, fast probe velocity (5 mm/sec) resulted in 1) an increase in peak adhesion strength, 2) a progressive debonding curve, and 3) increased work of cohesion (p  less then  .001). Corresponding videomicroscopy demonstrated pectin stranding and delamination between pectin films. Scanning electron microscopy images obtained during pectin debonding provided additional evidence of both stranding and delamination. We conclude that water movement can supply the motive force for the rapid chain entanglement between pectin films.This study was aimed at utilizing polysaccharides for the development of effective hydrogel microparticles for oral insulin delivery that has a controlled, and sustained release to enhance paracellular transcellular absorption. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogels (CMCD-g-CMCs) were prepared from carboxymethyl β-cyclodextrin (CMCD) and carboxymethyl chitosan (CMC) using a water-soluble carbodiimide as a crosslinker in the presence of N-hydroxysuccinimide. After synthesis, the hydrogel structures were determined via FT-IR and XRD analyses. The porous structure of hydrogels was confirmed by SEM observations and swelling behaviours. The insulin release behaviours were found to betriggered by pH in vitro. Results showed that insulin was successfully retained inside the hydrogels in the gastric environment and slowly released following passage to intestinal conditions. The stability of the secondary structure of insulin was studied by dichroism circular (CD) and fluorescence (FL) spectrophotometer measurement.

Facebook Pagelike Widget

Who’s Online

Profile picture of Lauridsen McCollum
Profile picture of Lassiter Smed
Profile picture of Harper Johannesen
Profile picture of Schou Mahoney
Profile picture of Frederick Fox
Profile picture of Dreyer Spencer
Profile picture of Faulkner Fox
Profile picture of McGarry Simpson
Profile picture of Farah Pilegaard
Profile picture of Munksgaard Duran
Profile picture of Johnsen Bigum