Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Lund Lauridsen posted an update 2 weeks ago

    We extracted and purified three polysaccharides from Echinacea purpurea using pectinase-assisted extraction to obtain crude preparations and optimized the method using an orthogonal analysis. We obtained three polysaccharide fractions (EPPS-1, -2 and -3) using DEAE ion exchange and gel filtration chromatography. The homogeneity of the fractions was confirmed using high performance gel permeation chromatography. EPPS-3 administered to mice in a LPS-induced septicemia model effectively counteracted the effects of LPS resulting in significantly less lung damage. This trend was also seen in the serum and lung cytokine levels where EPPS-3 significantly decreased the levels of TNF-α and IL-6 and increased IL-10. Particularly, we fully characterized the structure of the EPPS-3 polysaccharide using a series of technologies. This polysaccharide structure was mainly composed of →4)-α-Glcp-(1→, →4)-α-Galp-(1→, T-α-Araf-(1→, →3,4)-β-GalpA-(1→ glycosidic linkages at a certain proportion. In sum, EPPS-3, with a clear structure, has potent anti-inflammatory activities and is a candidate for further development as an anti-inflammatory agent for clinical development.The abundance of water on earth provides a large window to utilize the mechanical energy within river currents and ocean waves. In this regard, hydropower harvesting through solid-liquid contact electrification has received considerable interest in the recent past. Despite advancements in nanotechnology, liquid energy harvesting devices, especially solid-liquid triboelectric nanogenerators (S-L TENGs), require efficient engineering of the interfacial properties of their substrates to transfer liquid mass and momentum rapidly with the effective generation/transfer of surface charges. see more To face this challenge, several parameters such as the selection of material, surface morphology and surface properties are currently being studied to develop a better system architecture for energy harvesting and self-powered application platforms with three different interacting modes of liquid contact. Moreover, several parameters of the contact solvents such as the ionic activity and polarity have been studied to understand the practical applicability of S-L TENGs to harvest energy from different natural and artificial resources. In addition, the scope of harvesting mechanical energy from other volatile organic compounds has been studied recently. Self-powered applications of S-L TENGs in various fields have also been demonstrated by different research groups. This work reviews recent progress in the development of S-L TENGs for the first time in terms of the different properties of solid and liquid contact materials along with their respective applications. Furthermore, the work concludes with perspectives, future opportunities, and major challenges of fabricating S-L TENGs as an efficient energy harvester.Brønsted base catalyzed C-C bond formation reactions have been extensively utilized as reliable, efficient, and atom economical methods in organic synthesis. However, the electrophiles were mostly limited to polar ones such as imines, carbonyl compounds, α,β-unsaturated compounds, styrenes and conjugated dienes. The use of α-alkenes as electrophiles in the C-C bond formation reactions always needs transition metal catalysts. Herein, we reported an alkyl lithium-catalyzed benzylic C-H bond addition of alkyl pyridines to α-alkenes. The alkyl lithium catalyst displayed quite different selectivity from those of transition metal catalysts.In fiber suspensions with low optical contrast, the in situ characterization of structural properties with conventional microscopy methods fails. However, overlaying subsequent images of multiple particle tracking (MPT) videos including short trajectories usually discarded in MPT analysis allowed for direct visualization of individual fibers and the network structure of lyophilized collagen I (Coll) distributed in hydrochloric acid solutions. MPT yielded a broad distribution of mean square displacements (MSDs). Freely diffusing tracer particles yielded viscosities indicating that, irrespective of concentration, a constant amount of Coll is dissolved in the aqueous phase. Particles found elastically trapped within fibrous Coll structures exhibited a broad range of time-independent MSDs and we propose a structure comprising multiple fiber bundles with dense regions inaccessible to tracers and elastic regions of different stiffness in between. Bulky aggregates inaccessible to the 0.2 μm tracers exist even at low Coll concentrations, a network of slender fibers evolves above the sol-gel transition and these fibers densify with increasing Coll concentration. This novel MPT-based imaging technique possesses great potential to characterize the fiber distribution in and structural properties of a broad range of biological and technical suspensions showing low contrast when imaged with conventional techniques. Thus, MPT imaging and microrheology will help to better understand the effect of fiber distribution and network structure on the viscoelastic properties of complex suspensions.Mineral (Mg, Ca, Fe and Zn) bioaccessibility in common beans was evaluated taking into consideration the common bean food chain from postharvest storage over processing (soaking and cooking) until consumption. Beans were stored under realistic tropical conditions (35 °C and 80% RH) which resulted in significantly different cooking behaviour after 8 weeks compared to freshly harvested beans. Based on postcooking hardness, different storage times were selected unstored, 8 and 20 weeks. Independently of storage conditions, beans were soaked overnight and cooked for 30, 60 or 120 min. The mineral bioaccessibility decreased with increase in both storage and cooking times. Decrease in mineral bioaccessibility with increasing storage time was proved to be the result of increasing mineral chelation of cell wall polymers (e.g. pectin). Additionally, we hypothesize that by cooking, mineral chelators become more accessible, e.g. through pectin solubilization phenomena, in turn capturing more free minerals leading to a reduced mineral bioaccessibility.

Facebook Pagelike Widget

Who’s Online

Profile picture of Enemark Goodwin
Profile picture of Lorenzen Guldbrandsen
Profile picture of Jenkins Lamm
Profile picture of Napier Mejer
Profile picture of Lee Macias
Profile picture of Rubin Strong
Profile picture of Thestrup Mejia
Profile picture of Lindgren Heller
Profile picture of Guldbrandsen Hoffman
Profile picture of Mejer Brandt
Profile picture of Olsson Kanstrup
Profile picture of Vincent Sparks
Profile picture of Connell Flowers
Profile picture of Mcbride Kring
Profile picture of Andersson Lewis