-
Svensson Davenport posted an update 1 week ago
This study presented for the first time the development and validation of a sensitive method for quantification of dopamine, noradrenaline, and adrenaline in Krebs-Henseleit solution by LC-tandem mass spectrometry. Docetaxel in vitro Aliquots of 2.0 mL calibrators, quality controls, and samples of Krebs-Henseleit solution incubated with tortoise’s aortic ring for 30 min were extracted by solid-phase extraction. Catecholamine separation was achieved on a 100 × 4.6 mm LiChrospher RP-8 column and the quantification was performed by a mass spectrometer equipped with an electrospray interface operating in positive ion mode. The run time was 4 min and the calibration curve was linear over the range of 0.1-20.0 ng/mL. The method was applied to the measurement of basal release of dopamine, noradrenaline, and adrenaline from the tortoise Chelonoidis carbonaria aortae in vitro. One aortic ring (30 mm) per tortoise (n = 5) was incubated for 30 min in a 5 mL organ bath filled with Krebs-Henseleit solution. The method demonstrated sensitivity, precision, and accuracy enough for its application in the measurement of basal release of these catecholamines from C. carbonaria aortic rings in vitro. The mean (standard deviation) concentrations of dopamine, noradrenaline, and adrenaline were 3.48 (2.55) ng/mL, 1.40 (0.57) ng/mL, and 1.87 (1.09) ng/mL, respectively.Human-altered environments can shape the evolution of organisms. Fungi are no exception, although little is known about how they withstand anthropogenic pollution. Here, we document adaptation in the mycorrhizal fungus Suillus luteus driven by soil heavy metal contamination. Genome scans across individuals from recently polluted and nearby unpolluted soils in Belgium revealed low divergence across isolates and no evidence of population structure based on soil type. However, we detected single nucleotide polymorphism divergence and gene copy-number variation, with different genetic combinations potentially conferring the ability to persist in contaminated soils. Variants were shared across the population but found to be under selection in isolates exposed to pollution and located across the genome, including in genes involved in metal exclusion, storage, immobilization and reactive oxygen species detoxification. Together, our results point to S. luteus undergoing the initial steps of adaptive divergence and contribute to understanding the processes underlying local adaptation under strong environmental selection.Germanane (GeH), a germanium analogue of graphane, has recently attracted considerable interest because its remarkable combination of properties makes it an extremely suitable candidate to be used as 2D material for field effect devices, photovoltaics, and photocatalysis. Up to now, the synthesis of GeH has been conducted by substituting Ca by H in a β-CaGe2 layered Zintl phase through topochemical deintercalation in aqueous HCl. This reaction is generally slow and takes place over 6 to 14 days. The new and facile protocol presented here allows to synthesize GeH at room temperature in a significantly shorter time (a few minutes), which renders this method highly attractive for technological applications. The GeH produced with this method is highly pure and has a band gap (Eg ) close to 1.4 eV, a lower value than that reported for germanane synthesized using HCl, which is promising for incorporation of GeH in solar cells.VRC01 is a first-in-class, potent, broadly neutralizing antibody that targets the CD4 binding site of gp120 on HIV-1 viruses, and is under development as a novel HIV therapeutic. This study utilized population pharmacokinetic (PK) modeling to characterize VRC01 PK to guide dosing selection for ongoing phase II clinical trials in pediatric patients. Combining VRC01 PK data from 3 adult and 1 infant clinical trials, a total of 1,475 VRC01 serum concentrations from 100 participants were used in the analysis (40 infants and 60 adults). VRC01 was administered either i.v. or s.c. (1-40 mg/kg). All infants received s.c. doses as compared with 13% s.c. and 87% i.v. in adults. The data were well-described by a two-compartment model. Clearance was 37% higher in adults with HIV infection and 83% lower in infants than adults. Subcutaneous bioavailability was 55% in adults. Rapid absorption was seen in infants indicating therapeutic levels could be achieved quickly. Monte Carlo simulations were used to determine optimal dosing and demonstrated 40 mg/kg s.c. at weeks 0, 2, 6, and 10 would maintain VRC01 levels at the suppressive target concentration of 50 μg/mL for the first 14 weeks of life in infants. The current analysis provides new insight into differences in monoclonal antibody PK between infants and adults and demonstrates the utility of a population PK approach in informing drug development for infant populations.Defining an appropriate and efficient assessment of drug-induced corrected QT interval (QTc) prolongation (a surrogate marker of torsades de pointes arrhythmia) remains a concern of drug developers and regulators worldwide. In use for over 15 years, the nonclinical International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B and clinical ICH E14 guidances describe three core assays (S7B in vitro hERG current & in vivo QTc studies; E14 thorough QT study) that are used to assess the potential of drugs to cause delayed ventricular repolarization. Incorporating these assays during nonclinical or human testing of novel compounds has led to a low prevalence of QTc-prolonging drugs in clinical trials and no new drugs having been removed from the marketplace due to unexpected QTc prolongation. Despite this success, nonclinical evaluations of delayed repolarization still minimally influence ICH E14-based strategies for assessing clinical QTc prolongation and defining proarrhythmic risk. In particular, the value of ICH S7B-based “double-negative” nonclinical findings (low risk for hERG block and in vivo QTc prolongation at relevant clinical exposures) is underappreciated. These nonclinical data have additional value in assessing the risk of clinical QTc prolongation when clinical evaluations are limited by heart rate changes, low drug exposures, or high-dose safety considerations. The time has come to meaningfully merge nonclinical and clinical data to enable a more comprehensive, but flexible, clinical risk assessment strategy for QTc monitoring discussed in updated ICH E14 Questions and Answers. Implementing a fully integrated nonclinical/clinical risk assessment for compounds with double-negative nonclinical findings in the context of a low prevalence of clinical QTc prolongation would relieve the burden of unnecessary clinical QTc studies and streamline drug development.