-
Stanley Riber posted an update 3 weeks, 4 days ago
ant predictors of the proportion of mosquito’s biting becoming infectious. Ae. aegypti and Ae. albopictus have the ability to transmit ZIKV when incubated at 28°C. However Brazilian populations of Ae. aegypti exhibit a much higher transmission potential for ZIKV than Ae. albopictus regardless the combination of infection dose and incubation temperature.
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder caused by mutations of NPC1 or NPC2, which encode the proteins that are responsible for intracellular cholesterol trafficking. Loss of this function results in the accumulation of cholesterol-related products, such as oxysterols, sphingolipids, and NPC-related bile acids, which were recently used as biochemical biomarkers for the diagnosis of NPC. Bile acid-408 is a new significant compound we found in Japanese NPC patients, and it likely belongs to the category of bile acids. However, the diagnosis of NPC using a single biomarker is not satisfactory for clinical application because of the high instance of false negatives or positives. Therefore, we proposed an application of NPC diagnosis using a combination of 7-ketocholesterol (7-KC), lysosphingomyelin (lysoSM), bile acid-408 and/or glucosylsphingosine (lysoGL-1).
7-KC, lysoSM and lysoGL-1 in sera and bile acid-408 in dried blood spots (DBS) were quantified within 17 minutes using tanreparation and measurement. Future research should investigate the chemical structure of bile acid-408 to further facilitate its advantage in diagnosis.Although enteroaggregative E. coli (EAEC) has been implicated as a common cause of diarrhea in multiple settings, neither its essential genomic nature nor its role as an enteric pathogen are fully understood. The current definition of this pathotype requires demonstration of cellular adherence; a working molecular definition encompasses E. coli which do not harbor the heat-stable or heat-labile toxins of enterotoxigenic E. coli (ETEC) and harbor the genes aaiC, aggR, and/or aatA. In an effort to improve the definition of this pathotype, we report the most definitive characterization of the pan-genome of EAEC to date, applying comparative genomics and functional characterization on a collection of 97 EAEC strains isolated in the course of a multicenter case-control diarrhea study (Global Enteric Multi-Center Study, GEMS). Genomic analysis revealed that the EAEC strains mapped to all phylogenomic groups of E. coli. Circa 70% of strains harbored one of the five described AAF variants; there were no additional AAF variants identified, and strains that lacked an identifiable AAF generally did not have an otherwise complete AggR regulon. An exception was strains that harbored an ETEC colonization factor (CF) CS22, like AAF a member of the chaperone-usher family of adhesins, but not phylogenetically related to the AAF family. Of all genes scored, sepA yielded the strongest association with diarrhea (P = 0.002) followed by the increased serum survival gene, iss (p = 0.026), and the outer membrane protease gene ompT (p = 0.046). Notably, the EAEC genomes harbored several genes characteristically associated with other E. coli pathotypes. Our data suggest that a molecular definition of EAEC could comprise E. coli strains harboring AggR and a complete AAF(I-V) or CS22 gene cluster. Further, it is possible that strains meeting this definition could be both enteric bacteria and urinary/systemic pathogens.Existing models for assessing microbiome sequencing such as operational taxonomic units (OTUs) can only test predictors’ effects on OTUs. There is limited work on how to estimate the correlations between multiple OTUs and incorporate such relationship into models to evaluate longitudinal OTU measures. We propose a novel approach to estimate OTU correlations based on their taxonomic structure, and apply such correlation structure in Generalized Estimating Equations (GEE) models to estimate both predictors’ effects and OTU correlations. We develop a two-part Microbiome Taxonomic Longitudinal Correlation (MTLC) model for multivariate zero-inflated OTU outcomes based on the GEE framework. In addition, longitudinal and other types of repeated OTU measures are integrated in the MTLC model. SNX-2112 molecular weight Extensive simulations have been conducted to evaluate the performance of the MTLC method. Compared with the existing methods, the MTLC method shows robust and consistent estimation, and improved statistical power for testing predictors’ effects. Lastly we demonstrate our proposed method by implementing it into a real human microbiome study to evaluate the obesity on twins.Detection and segmentation of macrophage cells in fluorescence microscopy images is a challenging problem, mainly due to crowded cells, variation in shapes, and morphological complexity. We present a new deep learning approach for cell detection and segmentation that incorporates previously learned nucleus features. A novel fusion of feature pyramids for nucleus detection and segmentation with feature pyramids for cell detection and segmentation is used to improve performance on a microscopic image dataset created by us and provided for public use, containing both nucleus and cell signals. Our experimental results indicate that cell detection and segmentation performance significantly benefit from the fusion of previously learned nucleus features. The proposed feature pyramid fusion architecture clearly outperforms a state-of-the-art Mask R-CNN approach for cell detection and segmentation with relative mean average precision improvements of up to 23.88% and 23.17%, respectively.Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments.