Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Dempsey Refsgaard posted an update 2 days, 10 hours ago

    We present a first-principles study of the static and dynamic aspects of the strong Jahn-Teller (JT) and pseudo-JT (PJT) effects in niobium tetrafluoride, NbF4, in the manifold of its electronic ground state, 2E, and its first excited state, 2T2. The complex topography of the full-dimensional multi-sheeted adiabatic JT/PJT surfaces is analyzed computationally at the complete-active-space self-consistent-field (CASSCF) and multireference second-order perturbation levels of electronic structure theory, providing a detailed characterization of minima, saddle points, and minimum-energy conical intersection points. The calculations reveal that the tetrahedral (Td) configuration of NbF4 undergoes strong JT distortions along the bending mode of e symmetry, yielding tetragonal molecular structures of D2d symmetry with Td → D2d stabilization energies of about 2000 cm-1 in the X̃2E state and about 6400 cm-1 in the Ã2T2 state. In addition, there exists strong X̃2E-Ã2T2 PJT coupling via the bending mode of t2 symmetry, wic and dynamical JT/PJT effects in the X̃2E and Ã2T2 electronic states of NbF4.The Direct Dynamics variational Multi-Configurational Gaussian (DD-vMCG) method provides a fully quantum mechanical solution to the time-dependent Schrödinger equation for the time evolution of nuclei with potential surfaces calculated on-the-fly using a quantum chemistry program. Initial studies have shown its potential for flexible and accurate simulations of non-adiabatic excited-state molecular dynamics. In this paper, we present developments to the DD-vMCG algorithm that improve both its accuracy and efficiency. First, a new, efficient parallel algorithm to control the DD-vMCG database of quantum chemistry points is presented along with improvements to the Shepard interpolation scheme. Second, the use of symmetry in describing the potential surfaces is introduced along with a new phase convention in the propagation diabatization. Benchmark calculations on the allene radical cation including all degrees of freedom then show that the new scheme is able to produce a consistent non-adiabatic coupling vector field. This new DD-vMCG version thus opens the route for effectively and accurately treating complex chemical systems using quantum dynamics simulations.Diabatization of the molecular Hamiltonian is a standard approach to remove the singularities of nonadiabatic couplings at conical intersections of adiabatic potential energy surfaces. In general, it is impossible to eliminate the nonadiabatic couplings entirely-the resulting “quasidiabatic” states are still coupled by smaller but nonvanishing residual nonadiabatic couplings, which are typically neglected. Here, we propose a general method for assessing the validity of this potentially drastic approximation by comparing quantum dynamics simulated either with or without the residual couplings. To make the numerical errors negligible to the errors due to neglecting the residual couplings, we use the highly accurate and general eighth-order composition of the implicit midpoint method. The usefulness of the proposed method is demonstrated on nonadiabatic simulations in the cubic Jahn-Teller model of nitrogen trioxide and in the induced Renner-Teller model of hydrogen cyanide. We find that, depending on the system, initial state, and employed quasidiabatization scheme, neglecting the residual couplings can result in wrong dynamics. In contrast, simulations with the exact quasidiabatic Hamiltonian, which contains the residual couplings, always yield accurate results.A first-principles based quantum dynamics study of the Li + LiNa(v = 0, j = 0) → Li2(v’, j’) + Na reaction is reported for collision energies spanning the ultracold (1 nK) to cold (1 K) regimes. Piceatannol clinical trial A full-dimensional ab initio potential energy surface for the ground electronic state of Li2Na is utilized that includes an accurate treatment of the long-range interactions. The Li + LiNa reaction is barrierless and exoergic and exhibits a deep attractive potential well that supports complex formation. Thus, significant reactivity occurs even for collision temperatures approaching absolute zero. The reactive scattering calculations are based on a numerically exact time-independent quantum dynamics methodology in hyperspherical coordinates. Total and rotationally resolved rate coefficients are reported at 56 collision energies and include all contributing partial waves. Several shape resonances are observed in many of the rotationally resolved rate coefficients and a small resonance feature is also reported in the total rate coefficient near 50 mK. Of particular interest, the angular distributions or differential cross sections are reported as a function of both the collision energy and scattering angle. Unique quantum fingerprints (bumps, channels, and ripples) are observed in the angular distributions for each product rotational state due to quantum interference and shape resonance contributions. The Li + LiNa reaction is under active experimental investigation so that these intriguing features could be verified experimentally when sufficient product state resolution becomes feasible for collision energies below 1 K.Nanostructured alloy surfaces present unique physical properties and chemical reactivities that are quite different from those of the close-packed low-index surfaces. This can be beneficial for the design of new catalysts and electronic and data-storage devices. However, the growth of such surface nanostructures is not straightforward at the atomic scale. The cluster-based bulk structure of intermetallic compounds presents an original alternative to build surfaces with specific morphologies, in comparison to more traditional methods based on mechanical, chemical, or plasma treatments. It relies on their specific electronic structures-built from a network of bonds with a combination of ionic, covalent-like, and metallic characters, and also depends on the experimental conditions. In this paper, a few surface structures of cluster-based intermetallics are reviewed, with a special emphasis on quasicrystals and clathrates. We show how the intrinsic electronic properties of such compounds, as well as the surface preparation conditions, impact their surface morphologies, which can further influence the growth of atomic and molecular thin films at their surface.

Facebook Pagelike Widget

Who’s Online

Profile picture of Tran Donnelly
Profile picture of Lang Parsons
Profile picture of Vendelbo Mcclure
Profile picture of Healy Duggan
Profile picture of Nyborg Zachariassen
Profile picture of Head Burnett
Profile picture of Hoffmann Demir
Profile picture of Chambers Johansen
Profile picture of Bernard Funch
Profile picture of Mayer Tate
Profile picture of Lunde Johannsen
Profile picture of Mangum Truelsen
Profile picture of McGee Roach
Profile picture of Offersen Grace
Profile picture of Topp Jensen