Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Grossman Phillips posted an update 3 days, 8 hours ago

    We simulate a zero-temperature pure Z_3 lattice gauge theory in 2+1 dimensions by using an iPEPS (infinite projected entangled-pair state) Ansatz for the ground state. Our results are therefore directly valid in the thermodynamic limit. They clearly show two distinct phases separated by a phase transition. We introduce an update strategy that enables plaquette terms and Gauss-law constraints to be applied as sequences of two-body operators. This allows the use of the most up-to-date iPEPS algorithms. From the calculation of spatial Wilson loops we are able to prove the existence of a confined phase. We show that with relatively low computational cost it is possible to reproduce crucial features of gauge theories. We expect that the strategy allows the extension of iPEPS studies to more general LGTs.One of the main topological invariants that characterizes several topologically ordered phases is the many-body Chern number (MBCN). Paradigmatic examples include several fractional quantum Hall phases, which are expected to be realized in different atomic and photonic quantum platforms in the near future. Experimental measurement and numerical computation of this invariant are conventionally based on the linear-response techniques that require having access to a family of states, as a function of an external parameter, which is not suitable for many quantum simulators. Here, we propose an ancilla-free experimental scheme for the measurement of this invariant, without requiring any knowledge of the Hamiltonian. Specifically, we use the statistical correlations of randomized measurements to infer the MBCN of a wave function. Remarkably, our results apply to disklike geometries that are more amenable to current quantum simulator architectures.Ferroelectric tunnel junctions (FTJs), which consist of two metal electrodes separated by a thin ferroelectric barrier, have recently aroused significant interest for technological applications as nanoscale resistive switching devices. So far, most existing FTJs have been based on perovskite-oxide barrier layers. The recent discovery of the two-dimensional (2D) van der Waals ferroelectric materials opens a new route to realize tunnel junctions with new functionalities and nm-scale dimensions. Because of the weak coupling between the atomic layers in these materials, the relative dipole alignment between them can be controlled by applied voltage. This allows transitions between ferroelectric and antiferroelectric orderings, resulting in significant changes of the electronic structure. JAK inhibitor Here, we propose to realize 2D antiferroelectric tunnel junctions (AFTJs), which exploit this new functionality, based on bilayer In_2X_3 (X=S, Se, Te) barriers and different 2D electrodes. Using first-principles density functional theory calculations, we demonstrate that the In_2X_3 bilayers exhibit stable ferroelectric and antiferroelectric states separated by sizable energy barriers, thus supporting a nonvolatile switching between these states. Using quantum-mechanical modeling of the electronic transport, we explore in-plane and out-of-plane tunneling across the In_2S_3 van der Waals bilayers, and predict giant tunneling electroresistance effects and multiple nonvolatile resistance states driven by ferroelectric-antiferroelectric order transitions. Our proposal opens a new route to realize nanoscale memory devices with ultrahigh storage density using 2D AFTJs.The concept of space-time crystals (STC), i.e., translational symmetry breaking in time and space, was recently proposed and experimentally demonstrated for quantum systems. Here, we transfer this concept to magnons and experimentally demonstrate a driven STC at room temperature. The STC is realized by strong homogeneous microwave pumping of a micron-sized permalloy (Py) stripe and is directly imaged by scanning transmission x-ray microscopy (STXM). For a fundamental understanding of the formation of the STC, micromagnetic simulations are carefully adapted to model the experimental findings. Beyond the mere generation of a STC, we observe the formation of a magnonic band structure due to back folding of modes at the STC’s Brillouin zone boundaries. We show interactions of magnons with the STC that appear as lattice scattering, which results in the generation of ultrashort spin waves (SW) down to 100-nm wavelengths that cannot be described by classical dispersion relations for linear SW excitation. We expect that room-temperature STCs will be useful to investigate nonlinear wave physics, as they can be easily generated and manipulated to control their spatial and temporal band structures.Breaking the paradigm that polymers in crowded aqueous media obey Einstein’s law of diffusion, we report a localized nondiffusive hierarchical metastable state at intermediate confinements. Combining electrostatic and topological effects, we can tune the propensity of this new universality class in a quasicoacervate gel system consisting of guest polyamino acid chains inside an oppositely charged host hydrogel. Our observations offer strategies for controlled release and retention of macromolecules in aqueous crowded media, while opening a new direction for understanding topologically frustrated dynamics in polymers and other soft matter systems.We show that the recent NANOGrav result can be interpreted as a stochastic gravitational wave signal associated to formation of primordial black holes from high-amplitude curvature perturbations. The indicated amplitude and power of the gravitational wave spectrum agrees well with formation of primordial seeds for supermassive black holes.A topography in a Newtonian fluid occurs if there is a disturbance near the surface. But what if there is no such disturbance? We show by optical profilometry that a thin nematic film resting on a topological-defect-patterned substrate can exhibit a hill or divot at the opposing free (air) interface in the absence of a topological disturbance at that interface. We propose a model that incorporates several material properties and that predicts the major experimental features. This work demonstrates the importance of, in particular, anisotropic surface interactions in the creation of a free-surface topography.

Facebook Pagelike Widget

Who’s Online

Profile picture of House Omar
Profile picture of Salisbury Foley
Profile picture of Walter Kamper
Profile picture of Patel Lawson
Profile picture of Walter Singh
Profile picture of Behrens Wilhelmsen