-
Little Winters posted an update 3 weeks, 3 days ago
Compared to sandblasting and acid etching currently used as gold standard for zirconia dental implants no superiority of macrotexturization was found.An approach for reducing toxicity and enhancing therapeutic potential of supramolecular polyamine phosphate nanoparticles (PANs) through PEGylation of polyamines before their assembly into nanoparticles is presented here. It is shown that the number of polyethylene glycol (PEG) chains for polyamine largely influence physico-chemical properties of PANs and their biological endpoints. Poly(allylamine hydrochloride) (PAH) are functionalized through carbodiimide chemistry with three ratios of PEG molecules per PAH chain 0.1, 1, and 10. PEGylated PAH is then assembled into PANs by exposing the polymer to phosphate buffer solution. PANs decrease size and surface charge with increasing PEG ratios as evidenced by dynamic light scattering and zeta potential measurements, with the ten PEG/PAH ratio PANs having practically zero charge. Small angle X-ray scattering (SAXS) proves that PEG chains form a shell around a polyamine core, which is responsible for the screening of positive charges. MTT experiments show that the screening of amine groups decreases nanoparticle toxicity, with the lowest toxicity for the 10 PEG/PAH ratio. Fluorescence correlation spectroscopy (FCS) proves less interaction with proteins for PEGylated PANs. Positron emission tomography (PET) imaging of 18 F labelled PANs shows longer circulation time in healthy mice for PEGylated PANs than non-PEGylated ones.Detrimental lithium polysulfide (LiPS) shuttle effects and sluggish electrochemical conversion kinetics in lithium-sulfur (Li-S) batteries severely hinder their practical application. Separator modification has been extensively investigated as an effective strategy to address above issues. Nevertheless, in the case of functional separators, how to effectively block the LiPSs from diffusion while enabling the rapid Li ion transport remains a challenge. Herein, by using an “oxidation-etching” method, MXene membranes are presented with controllable in-plane pores as interlayer to regulate Li ion transportation and LiPS immobilization. Porous MXene membranes with optimized pore density and size can simultaneously anchor LiPS and ensure fast Li ion diffusion. Consequently, even with pure sulfur cathode, the improved Li-S batteries deliver excellent rate performance up to 2 C with a reversible capacity of 677.6 mAh g-1 and long-term cyclability over 500 cycles at 1 C with a low capacity decay of 0.07% per cycle. This work sheds new insights into the design of high-performance interlayers with manipulated nanochannels and tailored surface chemistry to regulate LiPSs trapping and Li ion diffusion in Li-S batteries.
Adaptive radiation therapy (ART) is an integral part of MR-guided RT (MRgRT), requiring a new RT plan for each treatment fraction and resulting in a significant increase in patient-specific quality assurance (PSQA). This study investigates the possibility of using treatment log-file for automated PSQA.
All treatment plans were delivered in 1.5T Unity MR-Linac (Elekta). A Unity compatible version of LinacView (Standard Imaging) was commissioned to automatically monitor and analyze the log-files. A total of 220 fields were delivered and measured by ArcCheck
-MR (Sun Nuclear) and LinacView. Thirty incorrectly matched fields were also delivered to check for error detection sensitivity. The gamma analysis, γ, with 3%, 3mm criteria was used in both ArcCheck
-MR and LinacView. Additionally, the gantry angle, jaws, and multileaf collimators (MLC) positions reported in the log-file were compared with plan positions using TG-142 criteria.
The γ (3%, 3mm) for the 190 plans were found to be between the range ofestigate the longer term reproducibility and correlation.Oxidized phospholipids (OxPLs) are pro-inflammatory molecules that affect bone remodeling under physiological conditions. Transgenic expression of a single-chain variable fragment (scFv) of the antigen-binding domain of E06, an IgM natural antibody that recognizes the phosphocholine (PC) moiety of OxPLs, increases trabecular and cortical bone in adult male and female mice by increasing bone formation. Bromelain mouse OxPLs increase with age, while natural antibodies decrease. Age-related bone loss is associated with increased oxidative stress and lipid peroxidation and is characterized by a decline in osteoblast number and bone formation, raising the possibility that increased OxPLs, together with the decline of natural antibodies, contribute to age-related bone loss. We show here that transgenic expression of E06-scFv attenuated the age-associated loss of spinal, femoral, and total bone mineral density in both female and male mice aged up to 22 and 24 months, respectively. E06-scFv attenuated the age-associated decline in trabecular bone, but not cortical bone, and this effect was associated with an increase in osteoblasts and a decrease in osteoclasts. Furthermore, RNA-seq analysis showed that E06-scFv increased Wnt10b expression in vertebral bone in aged mice, indicating that blocking OxPLs increases Wnt signaling. Unlike age-related bone loss, E06-scFv did not attenuate the bone loss caused by estrogen deficiency or unloading in adult mice. These results demonstrate that OxPLs contribute to age-associated bone loss. Neutralization of OxPLs, therefore, is a promising therapeutic target for senile osteoporosis, as well as atherosclerosis and non-alcoholic steatohepatitis (NASH), two other conditions shown to be attenuated by E06-scFv in mice.Bladder cancer (BC), one of the most common urological neoplastic disorders in men, has an extremely low survival rate because of its tendency to metastasize. The anticancer drugs chloroquine (CQ) and hydroxy CQ (HCQ) might inhibit tumor progression and invasiveness. However, the mechanism by which CQ and HCQ influence BC is undetermined. In this study, CQ and HCQ treatments inhibited the migration and invasion of two BC cell types (5637 and T24) through expression modulation of matrix metalloproteinase-2 (MMP-2), which belongs to the matrix MMP family and is a key mediator of cancer progression. Moreover, additional data revealed that the migrative and invasive effects of BC cells treated with CQ or HCQ were abolished after treatment with rapamycin, which induces autophagy, demonstrating that CQ and HCQ functions in BC are based on autophagy inhibition. In conclusion, our research demonstrated that CQ and HCQ regulated cell motility in BC through MMP-2 downregulation by targeting autophagy functions, providing a novel therapeutic strategy for BC treatment.