Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Little Lindahl posted an update 2 days, 10 hours ago

    Two-dimensional (2D) materials with both auxetic effect and ferroelasticity are rare, however, have great application potential in next generation microelectromechanical and nanoelectronic devices. Here, we report the findings of an extraordinary combination half-auxetic effect and ferroelasticity in a single p2mm-type TiSe monolayer by performing first-principles calculations. The unique half-auxetic effect, namely the material expand laterally under both uniaxial tensile strain, and compressive strain, is reported and explained by considering both the nearest and the next-nearest interactions. The ferroelasticity is stemming from the degeneracy breaking of the3d-orbitals of Ti atoms in a distorted tetrahedron crystal field, or the so-called Jahn-Teller effect. The results provide a guideline for the future design of novel 2D multiple functional materials at the nanoscale.Although it suffers from a heavy dependence on the noble platinum catalyst, the electrochemical hydrogen evolution reaction (HER) is one of the most promising methods for the production of hydrogen. After numerous efforts, it is found that MoS2-based heterostructure may replace platinum as the electrochemical HER catalyst. In this work, the nanocrystalline NiSe2/MoS2 heterostructures were successfully prepared on the carbon fiber paper (CFP) substrate through electrochemical deposition and hydrothermal process. According to a series of electrochemical HER tests and a comparison with other MoS2-based heterostructure catalysts, the CFP/NiSe2/MoS2 catalyst with an overpotential η 10 of 143 mV and a Tafel slope of 45 mV dec-1 exhibited an excellent electrochemical HER catalytic performance and durability. In addition, CFP/NiSe2/MoS2 catalyst was treated by plasma to further improve the catalytic performance of the catalyst.A novel hybrid method that combines the laser-focused atomic deposition (LFAD) and extreme ultraviolet (EUV) interference lithography has been introduced. The Cr grating manufactured by LFAD has advantages of excellent uniformity, low line edge roughness and its pitch value determined directly by nature constants (i.e. self-traceable). To further enhance the density of the Cr grating, the EUV interference lithography with 13.4 nm wavelength was employed, which replicated the master Cr grating onto a Si wafer with its pitch reduced to half. In order to verify the performance of the gratings manufactured by this novel method, both mask grating (Cr grating) and replicated grating (silicon grating) were calibrated by the metrological large range scanning probe microscope (Met.LR-SPM) at Physikalisch-Technische Bundesanstalt (PTB). The calibrated results show that both gratings have excellent short-term and long-term uniformity (i) the calibrated position deviation (i.e. nonlinearity) of the grating is below ±1 nm; (ii) the deviation of mean pitch values of 6 randomly selected measurement locations is below 0.003 nm. In addition, the mean pitch value of the Cr grating is calibrated as 212.781 ± 0.008 nm (k = 2). It well agrees with its theoretical value of 212.7787 ± 0.0049 nm, confirming the self-traceability of the manufactured grating by the LFAD. The mean pitch value of the Si grating is calibrated as 106.460 ± 0.012 nm (k = 2). It corresponds to the shrinking factor of 0.500 33 of the applied EUV interference lithographic technique. This factor is very close to its theoretical value of 0.5. The uniform, self-traceable gratings fabricated using this novel approach can be well applied as reference materials in calibrating, e.g. the magnification and uniformity of almost all kinds of high resolution microscopes for nanotechnology.The National Dose Registry (NDR) is owned and operated independently by Health Canada. This paper provides an overview of how the registry operates within the Canadian regulatory structure, followed by an analysis of annual effective dose trends in nine job classes with relatively higher mean annual effective doses, i.e. greater than 1 mSv as reported in 2017. Molibresib molecular weight The analysis showed that, with a few exceptions, mean annual effective doses have generally decreased or remained practically unchanged in the past two decades at relatively low exposure levels. This review of occupational dose trends is evidence of the effectiveness of radiation protection programmes in Canada. The NDR has played an important role in the identification of relatively higher dose records and allowed the regulatory bodies to act immediately to ensure appropriate actions were taken.Cone beam computed tomography (CBCT) has been available since the late 1990s for use in dentistry. European legislation requires optimisation of protection and the use of diagnostic reference levels (DRLs) as well as regular quality control (QC) of the imaging devices, which is well outlined in existing international recommendations. Nevertheless, the level of application is not known. Earlier studies have indicated that few European countries have established DRLs and that patient doses (exposure parameters) have not been properly optimised. The EURADOS Working Group 12-Dosimetry in Medical Imaging undertook a survey to identify existing practices in Member States. Questionnaires were developed to identify equipment types, clinical procedures performed, and exposure settings used. The surveys were circulated to 22 countries resulting in 28 responses from 13 countries. Variations were identified in the exposure factors and in the doses delivered to patients for similar clinical indicators. Results confirm that patient doses are still not properly optimised and DRLs are largely not established. There is a need to promote the importance of performing QC testing of dental CBCT equipment and to further optimise patient exposure by establishment and use of DRLs as a part of a continuous optimisation process.Objective.Previous studies demonstrated the possibility to fabricate stereo-electroencephalography probes with high channel count and great design freedom, which incorporate macro-electrodes as well as micro-electrodes offering potential benefits for the pre-surgical evaluation of drug resistant epileptic patients. These new polyimide probes allowed to record local field potentials, multi- and single-unit activity (SUA) in the macaque monkey as early as 1 h after implantation, and yielded stable SUA for up to 26 d after implantation. The findings opened new perspectives for investigating mechanisms underlying focal epilepsy and its treatment, but before moving to possible human application, safety data are needed. In the present study we evaluate the tissue response of this new neural interface by assessing post-mortem the reaction of brain tissue along and around the probe implantation site.Approach.Three probes were implanted, independently, in the brain of one monkey (Macaca mulatta) at different times. We used specific immunostaining methods for visualizing neuronal cells and astrocytes, for measuring the extent of damage caused by the probe and for relating it with the implantation time.

Facebook Pagelike Widget

Who’s Online

Profile picture of Rivers Fernandez
Profile picture of Buchanan Arildsen
Profile picture of Timmermann Kragh
Profile picture of Kim Mullen
Profile picture of Schou Mahoney
Profile picture of Eaton Dickerson
Profile picture of Boyette Rivera
Profile picture of Willard Bentley
Profile picture of Collins Hancock
Profile picture of Tarp Salas