Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Knudsen Rasch posted an update 1 week, 2 days ago

    Repetitive transcranial magnetic stimulation (rTMS) has gained growing interest for the treatment of major depression (MDD) and treatment-resistant depression (TRD). Most knowledge on rTMS comes from human studies as preclinical application has been problematic. However, recent optimization of rTMS in animal models has laid the foundations for improved translational studies. Preclinical studies have the potential to help identify optimal stimulation protocols and shed light on new neurobiological-based rationales for rTMS use. To assess existing evidence regarding rTMS effects on depressive-like symptoms in rodent models, we conducted a comprehensive literature search in accordance with PRISMA guidelines (PROSPERO registration number CRD42019157549). In addition, we conducted a meta-analysis to determine rTMS efficacy, performing subgroup analyses to examine the impact of different experimental models and neuromodulation parameters. Assessment of the depressive-like phenotype was quite homogeneous whilst rTMS parameters among the 23 included studies varied considerably. Most studies used a stress-induced model. Overall, results show a largely beneficial effect of active rTMS compared to sham stimulation, as reflected in the statistically significant recovery of both helplessness (SDM 1.34 [1.02;1.66]) and anhedonic (SDM 1.87 [1.02;2.72]) profiles. Improvement of the depressive-like phenotype was obtained in all included models and independently of rTMS frequency. Nonetheless, these results have limited predictive value for TRD patients as only antidepressant-sensitive models were used. Extending rTMS studies to other MDD models, corresponding to distinct endophenotypes, and to TRD models is therefore crucial to test rTMS efficacy and to develop cost-effective protocols, with the potential of yielding faster clinical responses in MDD and TRD.Ferroportin is an iron exporter essential for releasing cellular iron into circulation. Ferroportin is inhibited by a peptide hormone, hepcidin. In humans, mutations in ferroportin lead to ferroportin diseases that are often associated with accumulation of iron in macrophages and symptoms of iron deficiency anemia. Here we present the structures of the ferroportin from the primate Philippine tarsier (TsFpn) in the presence and absence of hepcidin solved by cryo-electron microscopy. TsFpn is composed of two domains resembling a clamshell and the structure defines two metal ion binding sites, one in each domain. Both structures are in an outward-facing conformation, and hepcidin binds between the two domains and reaches one of the ion binding sites. PD98059 manufacturer Functional studies show that TsFpn is an electroneutral H+/Fe2+ antiporter so that transport of each Fe2+ is coupled to transport of two H+ in the opposite direction. Perturbing either of the ion binding sites compromises the coupled transport of H+ and Fe2+. These results establish the structural basis of metal ion binding, transport and inhibition in ferroportin and provide a blueprint for targeting ferroportin in pharmacological intervention of ferroportin diseases.Mitochondrial dysfunction is linked to pathogenesis of Parkinson’s disease (PD). However, individual mitochondria-based analyses do not show a uniform feature in PD patients. Since mitochondria interact with each other, we hypothesize that PD-related features might exist in topological patterns of mitochondria interaction networks (MINs). Here we show that MINs formed nonclassical scale-free supernetworks in colonic ganglia both from healthy controls and PD patients; however, altered network topological patterns were observed in PD patients. These patterns were highly correlated with PD clinical scores and a machine-learning approach based on the MIN features alone accurately distinguished between patients and controls with an area-under-curve value of 0.989. The MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD patients also displayed specific changes. CRISPR/CAS9-based genome correction of alpha-synuclein point mutations reversed the changes in MINs of mDANs. Our organelle-interaction network analysis opens another critical dimension for a deeper characterization of various complex diseases with mitochondrial dysregulation.The family Richtersiidae, although established recently with the use of phylogenetic methods, was considered potentially paraphyletic at the time of its erection. Until now, the family comprised four genera, Richtersius, Diaforobiotus, Adorybiotus and a newly erected genus Crenubiotus. However, the genetic characterisation for the latter two genera was very limited or absent. To address concerns about the phylogenetic affinity of these two genera, we present a multilocus phylogeny of the families Richtersiidae and Murrayidae based on four molecular markers (18S rRNA, 28S rRNA, ITS-2 and COI). Our results show a distinct evolutionary lineage composed of Adorybiotus and Crenubiotus, which is sister to Murrayidae. In order to accommodate the phylogenetic and morphological distinctiveness of this lineage, we erect a new family, Adorybiotidae fam. nov. The new taxon differs morphologically from other families in the superfamily Macrobiotoidea by a unique combination of traits (1) the presence of tubercles/cushions with aggregations of microgranules on their surfaces present on all legs and on the dorso-caudal cuticle, (2) a system of internal septa in claws, and (3) buccal apparatus morphology. Moreover, in order to stabilise the taxonomy and nomenclature in the genus Crenubiotus, we redescribe its type species, Crenubiotus crenulatus, by means of integrative taxonomy and designate a new neotype based on a population from the original terra typica.Microorganisms are employed to mine economically important elements from rocks, including the rare earth elements (REEs), used in electronic industries and alloy production. We carried out a mining experiment on the International Space Station to test hypotheses on the bioleaching of REEs from basaltic rock in microgravity and simulated Mars and Earth gravities using three microorganisms and a purposely designed biomining reactor. Sphingomonas desiccabilis enhanced mean leached concentrations of REEs compared to non-biological controls in all gravity conditions. No significant difference in final yields was observed between gravity conditions, showing the efficacy of the process under different gravity regimens. Bacillus subtilis exhibited a reduction in bioleaching efficacy and Cupriavidus metallidurans showed no difference compared to non-biological controls, showing the microbial specificity of the process, as on Earth. These data demonstrate the potential for space biomining and the principles of a reactor to advance human industry and mining beyond Earth.

Facebook Pagelike Widget

Who’s Online

Profile picture of Wilcox Munk
Profile picture of Aycock Burks
Profile picture of Sommer Glud
Profile picture of Ring McGinnis
Profile picture of Han Reddy
Profile picture of Stark Lawrence
Profile picture of Ravn Bennett
Profile picture of Burgess Wiberg
Profile picture of Gentry Leon
Profile picture of McCabe Farrell
Profile picture of Sweet Kirkegaard