-
Hyldgaard Vance posted an update 4 days, 10 hours ago
Further analysis showed that the DEcirs and their corresponding DETmiRs intertwined into complicated immune related networks. These results indicate that in flounder, circRNAs are regulated by V. anguillarum and form interactive networks with mRNAs and miRNAs that likely play important roles in the immune defense against pathogen infection.Candida albicans is an opportunistic pathogen that causes mucosal gastrointestinal (GI) candidiasis tightly associated with gut inflammatory status. The emergence of drug resistance, the side effects of currently available antifungals and the high frequency of recurrent candidiasis indicate that new and improved therapeutics are needed. Probiotics have been suggested as a useful alternative for the management of candidiasis. We demonstrated that oral administration of Lactobacillus gasseri LA806 alone or combined with Lactobacillus helveticus LA401 in Candida albicans-infected mice decrease the Candida colonization of the oesophageal and GI tract, highlighting a protective role for these strains in C. albicans colonization. Interestingly, the probiotic combination significantly modulates the composition of gut microbiota towards a protective profile and consequently dampens inflammatory and oxidative status in the colon. Moreover, we showed that L. helveticus LA401 and/or L. gasseri LA806 orient macrophages towards a fungicidal phenotype characterized by a C-type lectin receptors signature composed of Dectin-1 and Mannose receptor. Our findings suggest that the use of the LA401 and LA806 combination might be a promising strategy to manage GI candidiasis and the inflammation it causes by inducing the intrinsic antifungal activities of macrophages. Thus, the probiotic combination is a good candidate for managing GI candidiasis by inducing fungicidal functions in macrophages while preserving the GI integrity by modulating the microbiota and inflammation.Natural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g., tumor or virus-infected cells. A desired property of cancer immunotherapy is, therefore, to activate educated NK cells during anti-tumor responses in vivo. We here analyze NK cell responses to α-galactosylceramide (αGC), a potent activator of invariant NKT (iNKT) cells, or to exosomes loaded with αGC. In mouse strains which express different MHC-I alleles using an extended NK cell flow cytometry panel, we show that αGC induces a biased NK cell proliferation of educated NK cells. Importantly, iNKT cell-induced activation of NK cells selectively increased in vivo missing self-responses, leading to more effective rejection of tumor cells. Exosomes from antigen-presenting cells are attractive anti-cancer therapy tools as they may induce both innate and adaptive immune responses, thereby addressing the hurdle of tumor heterogeneity. Adding αGC to antigen-loaded dendritic-cell-derived exosomes also led to an increase in missing self-responses in addition to boosted T and B cell responses. This study manifests αGC as an attractive adjuvant in cancer immunotherapy, as it increases the functional capacity of educated NK cells and enhances the innate, missing self-based antitumor response.COVID-19 is affecting many countries all around the world. Unfortunately, no treatment has already been approved for the management of patients infected by SARS-CoV-2. It seems that SARS-CoV-2 can induce the activation of an exaggerated immune response against itself according to different mechanisms that are not really well known. Inflammatory interleukins, such as IL-6 among others, play a central role in this uncontrolled immune response. There is a strong rational under ibrutinib use in in the treatment of immune-based diseases, such a as GVHD or RA. Ibrutinib achieves a reduction in the production of TNFα, IL1, IL-6 and Monocyte chemo-attractant protein-1 (MCP-1) by neutrophils and macrophages, that are key players in keeping the inflammatory process. We present our clinical experience about ibrutinib use in ARDS secondary to SARS-CoV-2 in a patient with chronic lymphocytic leukemia (CLL).Human amniotic fluid stem cells (hAFSCs) are broadly multipotent immature progenitor cells with high self-renewal and no tumorigenic properties. These cells, even amplified, present very variable morphology, density, intracellular composition and stemness potential, and this heterogeneity can hinder their characterization and potential use in regenerative medicine. Celector® (Stem Sel ltd.) is a new technology that exploits the Non-Equilibrium Earth Gravity Assisted Field Flow Fractionation principles to characterize and label-free sort stem cells based on their solely physical characteristics without any manipulation. Viable cells are collected and used for further studies or direct applications. In order to understand the intrapopulation heterogeneity, various fractions of hAFSCs were isolated using the Celector® profile and live imaging feature. The gene expression profile of each fraction was analysed using whole-transcriptome sequencing (RNAseq). ZX703 in vivo Gene Set Enrichment Analysis identified significant differential expression in pathways related to Stemness, DNA repair, E2F targets, G2M checkpoint, hypoxia, EM transition, mTORC1 signalling, Unfold Protein Response and p53 signalling. These differences were validated by RT-PCR, immunofluorescence and differentiation assays. Interestingly, the different fractions showed distinct and unique stemness properties. These results suggest the existence of deep intra-population differences that can influence the stemness profile of hAFSCs. This study represents a proof-of-concept of the importance of selecting certain cellular fractions with the highest potential to use in regenerative medicine.This paper reports the creation of hydroxyapatite/polyester nanografts by “graft-from” polymerization of d,l-lactide with [Ca5(OH)(PO4)3]2 as the initiator and tin(II)-2-ethylhexanoate as the catalyst. Model polymerizations were performed with cyclooctanol as initiator to confirm the grafting on the surface of the hydroxyapatite nanocrystals. Polymers with the highest molecular mass (Mn) between 4250 Da (cyclooctanol) and 6100 Da (hydroxyapatite) were produced. In both cases the molecular mass distributions of the polymers formed were monomodal. The materials obtained were characterized by size-exclusion chromatography, NMR and FT-IR spectroscopy, and thermal methods. Their suitability as additives for commercial bone cement (Simplex P Speedset, Stryker Orthopaedics) has been confirmed by thermal analysis techniques and mechanical testing. The results obtained show that addition of the hydroxyapatite/ polyester nanografts improved both thermal and mechanical properties of the bone cement.