Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Marshall Lauesen posted an update 1 day, 12 hours ago

    Removal of As can be achieved even under visible light, confirming the field applicability of low-cost FG materials.This paper proposes a sustainable and facile approach for the synthesis of photocatalysts in which shell waste is used as support material. The synthesized photocatalysts exhibited a significant performance in the mineralization of organic substances under solar irradiation or artificial lighting. Calcined abalone shell with a TiO2 loading of 23.4% led to a significant improvement in optical absorption the degradation efficiencies of methylene blue (MB) after 140 min under UV light, vis light, UV-vis light, and natural sunlight were 93%, 96%, 100%, and 100%, respectively. Notably, the byproducts obtained after the degradation by commercial P25 TiO2 disappeared with the utilization of shell waste as support material. The Na, Sr, S present in the calcined abalone shell were doped into the substitutional sites of TiO2 and were indispensable to achieve the desired band-gap narrowing and photocatalytic performance; moreover, the Ti and Zn oxides in the calcined abalone shell acted as semiconductors and improved the charge separation efficiency of TiO2. Above all, this paper describes a green synthesis based on the use of waste seashell. This material acts as an excellent photocatalyst support for environmental pollution treatments, leading to the ‘control of waste by waste’ and opening up new possibilities for shell waste reutilization and sustainable chemistry.Intensive studies have been performed on the improvement of bioethanol production by transformation of lignocellulose biomass. find more In this study, the digestibility of corn stover was dramatically improved by using laccase immobilized on Cu2+ modified recyclable magnetite nanoparticles, Fe3O4-NH2. After digestion, the laccase was efficiently separated from slurry. The degradation rate of lignin reached 40.76%, and the subsequent cellulose conversion rate 38.37% for 72 h at 35 °C with cellulase at 50 U g-1 of corn stover. Compared to those of free and inactivated mode, the immobilized laccase pre-treatment increased subsequent cellulose conversion rates by 23.98% and 23.34%, respectively. Moreover, the reusability of immobilized laccase activity remained 50% after 6 cycles. The storage and thermal stability of the fixed laccase enhanced by 70% and 24.1% compared to those of free laccase at 65 °C, pH 4.5, respectively. At pH 10.5, it exhibited 16.3% more activities than its free mode at 35 °C. Our study provides a new avenue for improving the production of bioethanol with immobilized laccase for delignification using corn stover as the starting material.This study aims to produce hydrochar from high-ash low-lipid Chlorella vulgaris biomass via hydrothermal carbonization (HTC) process. The effects of hydrothermal temperature and retention time with respect to the physicochemical properties of hydrochar were studied in the range of 180-250 °C and 0.5-4 h, respectively. It was found that the hydrothermal temperature had resulted in a significant reduction of hydrochar yield as compared to the retention time. The raw microalgal biomass was successfully converted into an energy densified hydrochar via an optimized HTC reaction, with higher heating value (HHV) of 24.51 kJ/g, which was approximately two-times higher than that of raw biomass. In addition, the overall carbon recovery rate and energy yield were in the range of 53.2-86.4% and 46.9-76.6%, respectively. The high quality of the produced hydrochar was further supported by the plot of van Krevelen diagram and combustion behaviour analysis. Besides, the aqueous phase collected from HTC process could be further used as nutrients source to cultivate C. vulgaris, in which up to 70% of the biomass yield could be attained as compared to the control cultivation condition. The reusability of the aqueous phase collected from HTC process as an alternative nutrients source to cultivate microalgal indicated the feasibility and positive integration of HTC process in microalgal biofuel processing chain.Adsorptive removal of emerging contaminants like antibiotics from aqueous systems having one or more antibiotics using acid activated carbon have rarely been studied and reported. Current study deals with the adsorptive removal of individual antibiotic species i.e. Ciprofloxacin (CIP) and Amoxicillin (AMX) from single (CIP and AMX) and binary (CIP + AMX) adsorption systems using acid activated carbon prepared from Prosopis juliflora wood (PPJ). Binary adsorption system involved the synergistic and antagonistic influence of one antibiotic over the adsorption of other antibiotic. Physico-chemical alterations of PPJ surface due to acid activation and after adsorption were characterized for any surface modification. Parameters influencing the efficient adsorption of CIP and AMX viz. Initial pH of antibiotic solution, dosage of PPJ, sorbent-sorbate incubation temperature and initial concentration of antibiotic species were optimized. Sorbate-sorbent interaction studies for single system revealed sorbate’s monolayer formation over adsorbent’s surface and the involvement of chemisorption as verified by Langmuir isotherm model and pseudo-second order model respectively. For single system, Langmuir maximum adsorption capacity of PPJ was 250 mg/g for CIP and 714.29 mg/g for AMX. Meanwhile, competitive Langmuir model was used to investigate adsorption capacity of individual antibiotics in binary system i.e. 370.37 mg/g for CIP and 482.14 mg/g for AMX thus verifying CIP has antagonistic effect on AMX adsorption and AMX has synergistic effect on CIP adsorption on PPJ surface. Recyclability studies verified the PPJ can be used up to 4 cycles and co-existing cationic and anionic salts had minimal effect on the adsorption of antibiotics over PPJ surface. Conclusively PPJ proved efficient in eliminating emerging contaminants like that of antibiotics and thus it can be exploited for other grades of pollutants.The sharp increase in e-waste derived from great consumption of electronic products has become a potential global environmental challenge. Limited information is available about the potential detrimental impact of e-waste on aquatic organisms. The present study investigated the expression of detoxification-related genes and life-history parameter changes in Daphnia magna exposed to e-waste leachate, simultaneously integrating with the chemical analysis of typical pollutants from e-waste leachate. The study aims at assessing impacts of e-waste to aquatic invertebrates and providing insights into its toxic mechanisms. The results showed high concentration of heavy metals like Cu (1657.14 ± 259.3 μg g-1, DW) and persistent organic compounds like polybrominated diphenyl ethers (7831.32 ± 1273.86 ng g-1, DW) in stream sediments near e-waste dismantling areas. Chronic exposure to these pollutants can affect the growth and reproduction of D. magna, resulting in significant development retardation, decreased total egg production per female, and even smaller body size.

Facebook Pagelike Widget

Who’s Online

Profile picture of Adamsen Leth
Profile picture of Willoughby Gill
Profile picture of Bro Leth
Profile picture of Waddell Jepsen