Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Jamison Steffensen posted an update 5 days, 10 hours ago

    Enlightened by this study, future remediation strategies should be focused on steadily increasing soil pH, and building adaptable and sustainable ecological system to maintain low metal availabilities in mine site soils.In processes of manufacturing semiconductors, reactive by-products (as a form of fine powder, i.e., dust) are deposited in pipes installed on post processing and exhaust systems, potentially involving a considerable explosion risk. In this study, the effectiveness of scrubber methods (e.g., dry scrubber and burn-wet scrubber) to mitigate the risk was evaluated. To this end, three by-products generated from a ZrO2 atomic layer deposition (ALD) process were collected from semiconductor manufacturers, which were treated with different methods (i.e., no treatment, treatment using dry scrubber, and treatment using burn-wet scrubber), and their characteristics were analyzed and compared. Particle size measurements of the by-products proved that the burn-wet scrubber treatment less decreased their particle size than the dry scrubber treatment. The burn-wet scrubber treatment made the by-product thermally stable, confirmed by thermogravimetric analysis. Fourier-transform infrared spectroscopy of the by-products before and after the scrubber treatments showed that burn-wet scrubbing of the by-product decreases surface functionalities that play a role in explosion. Dust explosion testing proved that robustness of explosion of the untreated by-product is about 7 times higher than the by-product treated with the burn-wet scrubber. Based on the results of this study, it would be suggested that burn-wet scrubber is a useful treatment method to decrease the explosion risks caused by dust by-products generated from ALD in semiconductor manufacturing processes.The paper describes a new method of waste polyethylene terephthalate (PET) recycling based on gas-phase treatment of the material in nitrating atmosphere. It was found that PET samples kept in the nitrating atmosphere (obtained by vaporizing 12 mol L-1 HNO3) at a temperature of 403-463 K (130-190 °C) for 5-24 h dissolve in 0.5 mol L-1 NaOH, in contrast to the untreated PET samples. Ozonation of the obtained alkaline solutions leads to a complete decomposition of the organic compounds present in the solutions. The resulting PET decomposition degree is higher than 99.9 % irrespective of the plastic color. In addition, the possibility of terephthalic acid recovery from the alkaline solutions of the conversion products was shown.The purpose of this study was to reveal the absorption and interaction mechanisms of uranium (U) & cadmium (Cd) in corps. check details Purple sweet potato (Ipomoea batatas L.) was selected as the experimental material. The absorption behavior of U and Cd in this crop and the effects on mineral nutrition were analyzed in a pot experiment. The interactions between U and Cd in purple sweet potato were analyzed using UPLC-MS metabolome analysis. The pot experiment confirmed that the root tuber of the purple sweet potato had accumulated U (1.68-5.16 mg kg-1) and Cd (0.78-2.02 mg kg-1) and would pose a health risk if consumed. Both U and Cd significantly interfered with the mineral nutrient of the roots. Metabolomics revealed that a total of 4865 metabolites were identified in roots. 643 (419 up; 224 down), 526 (332 up; 194 down) and 634 (428 up; 214 down) different metabolites (DEMs) were identified in the U, Cd, and U + Cd exposure groups. Metabolic pathway analysis showed that U and Cd induced the expression of plant hormones (the first messengers) and cyclic nucleotides (cAMP and cGMP, second messengers) in cells and regulated the primary/secondary metabolism of roots to induce resistance to U and Cd toxicity.2,2,4,4-tetrabromodiphenyl ether (BDE-47) has received considerable attention because of its high detection level in biological samples and potential developmental toxicity. Here, using zebrafish (Danio rerio) as the experimental animal, we investigated developmental effects of BDE-47 and explored the potential mechanism. Zebrafish embryos at 4 h post-fertilization (hpf) were exposed to 0.312, 0.625 and 1.25 mg/L BDE-47 to 74-120 hpf. We found that BDE-47 instigated a dose-related developmental toxicity, evidenced by reduced embryonic survival and hatching rate, shortened body length and increased aberration rate. Meanwhile, higher doses of BDE-47 reduced mitochondrial membrane potential and ATP production but increased apoptosis in zebrafish embryos. Expression of genes involved in mitochondrial oxidative phosphorylation (OXPHOS) (ndufb8, sdha, uqcrc1, cox5ab and atp5fal) were negatively related to BDE-47 doses in zebrafish embryos. Moreover, exposure to BDE-47 at 0.625 or 1.25 mg/L impaired mitochondrial biogenesis and mitochondrial dynamics. Our data further showed that BDE- 47 exposure induced excessive reactive oxygen species (ROS) and oxidative stress, which was accompanied by the activation of c-Jun N-terminal Kinase (JNK). Antioxidant NAC and JNK inhibition could mitigate apoptosis in embryos and improve embryonic development in BDE-47-treated zebrafish, suggesting the involvement of ROS/JNK pathway in embryonic developmental changes induced by BDE-47. Altogether, our data suggest here that developmental toxicity of BDE-47 may be associated with mitochondrial ROS-mediated JNK signaling in zebrafish embryo.The emergence of antibiotics as pollutants in the environment is one of the worldwide concerns because the bacterial strains generate a threat to the aquatic ecosystem and human health. In this study, an alkylated chitosan polyelectrolyte (ChA-PE) was used in conjunction with ultrafiltration membranes to remove three commonly used antibiotics, including amoxicillin (AMX), tetracycline (TET), and ciprofloxacin (CIP), in aqueous systems. The removal study considered diverse experimental variables through two methods washing (pH, ionic strength, polymer ratio, and antibiotic concentration) and enrichment (maximum retention capacity). The retention percentage reached 80% at a pH of 11.0 at different polymer/antibiotic molar ratios. The ChA-PE presented irreversibly bound antibiotic interaction values of 0.51, 0.74, and 0.92 for CIP, AMX, and TET, respectively, at a pH of 11, showing that the polymer presents stronger permanent interactions with AMX and TET. On the other hand, the ChA-PE presented maximum retention capacity values of 185.

Facebook Pagelike Widget

Who’s Online

Profile picture of Olsson Pollard
Profile picture of MacLean Sigmon
Profile picture of Justesen Hull
Profile picture of Cherry Foged
Profile picture of Buus Bateman
Profile picture of Worm Stafford