-
Wynn Hanna posted an update 1 week, 2 days ago
Moreover, we propose a new perspective on habenular deficits in psychiatric disorders that consider the habenula a neural substrate that could explain multiple psychiatric disorders.Relapse is a major obstacle to curb the ongoing epidemic of prescription opioid abuse. learn more We and others previously demonstrated that oxycodone seeking in adult rats progressively increases after abstinence from oxycodone self-administration (incubation of oxycodone craving). In humans, the onset of oxycodone use in adolescents may increase individuals’ vulnerability to later opioid addiction. However, little is known about incubation of oxycodone craving after adolescent-onset oxycodone self-administration in rats. In the first study, we trained single-housed adolescent (postnatal day 35 at start) and adult (postnatal day 77 at start) male Sprague-Dawley rats to self-administer oxycodone (0.1 mg/kg/infusion, 6 h/day for 10 days) and then tested oxycodone relapse on both abstinence day 1 and day 15. Given that social experience is critical for neurobehavioral development in adolescents, we performed the second study using group-housed adolescent and adult rats. In both studies, we observed no age differences in oxycodone self-administration and incubated oxycodone seeking on abstinence day 15. However, on abstinence day 1, we observed decreased oxycodone seeking in adolescents compared with adults. This pattern of data led to elevated incubation slopes in adolescent rats compared with adult rats. Finally, group-housed rats exhibited attenuated oxycodone seeking compared with single-housed rats on abstinence day 15, but not on day 1. Taken together, these data suggest that adolescents may be resistant to oxycodone relapse during early abstinence, but this resistance dissipates quickly during the transition between adolescent and young adulthood. In addition, group-housing plays a protective role against incubated oxycodone craving.According to the WHO, major depressive disorder is the leading cause of disability worldwide, and it is a major contributor to the overall global burden of disease. The pathophysiology of this common and chronic disease is still not completely understood. The gut microbiome is an increasingly recognized environmental factor that can have a role in depression, acting through the gut-microbiota-brain axis. The available treatment for depression is still insufficient since 30% of patients are treatment-resistant. There is an unquestionable need for novel strategies. Ketamine is an effective antidepressant in treatment-resistant patients. It is suggested that the antidepressant effect of ketamine may be partially mediated by the modification of gut microbiota. In this study, we presented a review of data on gut microbiota in depression with special attention to the effect of ketamine on the microbiome in animal models of depression. Earlier reports are preliminary and are still insufficient to draw firm conclusion, but further studies in this field might help to understand the role of the gut-brain axis in the treatment of depression and might be the ground for developing new effective treatment strategies.Developmental prosopagnosia (DP), also known as face blindness, is a cognitive disorder with a severe deficit in recognizing faces. However, the heterogeneous nature of DP leads to a longstanding debate on which stages the deficit occurs, face perception (e.g., matching two consecutively presented faces) or face memory (e.g., matching a face to memorized faces). Here, we used the individual difference approach with functional magnetic resonance imaging to explore the neural substrates of DPs’ face perception and face memory that may illuminate DPs’ heterogeneity. Specifically, we measured the behavioral performance of face perception and face memory in a large sample of individuals suffering DP (N = 64) and then associated the behavioral performance with their face-selective neural responses in the core face network (CFN) and the extended face network (EFN), respectively. Behaviorally, we found that DP individuals were impaired in both face perception and face memory; however, there was only a weak correlation between the performances of two tasks. Consistent with this observation, the neural correlate of DPs’ performance in face memory task was localized in the bilateral fusiform face area, whereas DPs’ performance in face perception task was correlated with the face selectivity in the right posterior superior temporal sulcus, suggesting that the neural substrates in the CFN for face memory and face perception were separate in DP. In contrast, shared neural substrates of deficits in face perception and face memory tasks were identified in the EFN, including the right precuneus and the right orbitofrontal cortex. In summary, our study provides one of the first empirical evidence that the separate and shared neural substrates of face perception and face memory were identified in the CFN and EFN, respectively, which may help illuminating DP’s heterogeneous nature.In this paper, we introduce an active inference model of ant colony foraging behavior, and implement the model in a series of in silico experiments. Active inference is a multiscale approach to behavioral modeling that is being applied across settings in theoretical biology and ethology. The ant colony is a classic case system in the function of distributed systems in terms of stigmergic decision-making and information sharing. Here we specify and simulate a Markov decision process (MDP) model for ant colony foraging. We investigate a well-known paradigm from laboratory ant colony behavioral experiments, the alternating T-maze paradigm, to illustrate the ability of the model to recover basic colony phenomena such as trail formation after food location discovery. We conclude by outlining how the active inference ant colony foraging behavioral model can be extended and situated within a nested multiscale framework and systems approaches to biology more generally.Reversal learning requires an animal to learn to discriminate between two stimuli but reverse its responses to these stimuli every time it has reached a learning criterion. Thus, different from pure discrimination experiments, reversal learning experiments require the animal to respond to stimuli flexibly, and the reversal learning performance can be taken as an illustration of the animal’s cognitive abilities. We herein describe a reversal learning experiment involving a simple spatial discrimination task, choosing the right or left side, with octopus. When trained with positive reinforcement alone, most octopuses did not even learn the original task. The learning behavior changed drastically when incorrect choices were indicated by a visual signal the octopuses learned the task within a few sessions and completed several reversals thereby decreasing the number of errors needed to complete a reversal successively. A group of octopus trained with the incorrect-choice signal directly acquired the task quickly and reduced their performances over reversals.