Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Wynn Hanna posted an update 3 days, 12 hours ago

    The anionic starch aerogels had the highest amount of phenolic compounds released when compared to the native starch aerogels. find more The starch-based bioactive aerogels showed potential to be applied in food packaging as water absorbent and as a carrier of phenolic compounds.Herein, we report a new simple and easy-to-use approach for the characterization of protein oligomerization based on fluorescence resonance energy transfer (FRET) and capillary electrophoresis with LED-induced detection. The FRET pair consisted of quantum dots (QDs) used as an emission tunable donor (emission wavelength of 450 nm) and a cyanine dye (Cy3), providing optimal optical properties as an acceptor. Nonoxidative dimerization of mammalian metallothionein (MT) was investigated using the donor and acceptor covalently conjugated to MT. The main functions of MTs within an organism include the transport and storage of essential metal ions and detoxification of toxic ions. Upon storage under aerobic conditions, MTs form dimers (as well as higher oligomers), which may play an essential role as mediators in oxidoreduction signaling pathways. Due to metal bridging by Cd2+ ions between molecules of metallothionein, the QDs and Cy3 were close enough, enabling a FRET signal. The FRET efficiency was calculated to be in the range of 11-77%. The formation of MT dimers in the presence of Cd2+ ions was confirmed by MALDI-MS analyses. Finally, the process of oligomerization resulting in FRET was monitored by CE, and oligomerization of MT was confirmed.Yeast glucan particles (GPs) are promising agents for the delivery of biologically active compounds as drugs. GPs possess their own biological activities and can act synergistically with their cargo. This study aimed to determine how incorporating artemisinin, ellagic acid, (-)-epigallocatechin gallate, morusin, or trans-resveratrol into GPs affects their anti-inflammatory and antioxidant potential in vitro. Two different methods – slurry evaporation and spray drying – were used to prepare composites (GPs + bioactive compound) and the anti-inflammatory and antioxidative properties of the resultant products were compared. Several of the natural compounds showed the beneficial effects of being combined with GPs. The materials prepared by spray drying showed greater activity than those made using a rotary evaporator. Natural compounds incorporated into yeast GPs showed greater anti-inflammatory potential in vitro than simple suspensions of these compounds as demonstrated by their inhibition of the activity of transcription factors NF-κB/AP-1 and the secretion of the pro-inflammatory cytokine TNF-α.Pancreatic cancer is a devastating gastrointestinal tumor with limited Chemotherapeutic options. Treatment is restricted by its poor vascularity and dense surrounding stroma. Quinacrine is a repositioned drug with an anticancer activity but suffers a limited ability to reach tumor cells. This could be enhanced using nanotechnology by the preparation of quinacrine-loaded Undaria pinnatifida fucoidan nanoparticles. The system exploited fucoidan as both a delivery system of natural origin and active targeting ligand. Lactoferrin was added as a second active targeting ligand. Single and dual-targeted particles prepared through nanoprecipitation and ionic interaction respectively were appraised. Both particles showed a size lower than 200 nm, entrapment efficiency of 80% and a pH-dependent release of the drug in the acidic environment of the tumor. The anticancer activity of quinacrine was enhanced by 5.7 folds in dual targeted particles compared to drug solution with a higher ability to inhibit migration and invasion of cancer. In vivo, these particles showed a 68% reduction in tumor volume compared to only 20% for drug solution. In addition, they showed a higher animals’ survival rate with no hepatotoxicity. Hence, these particles could be an effective option for the eradication of pancreatic cancer cells.Emerging antibiotic resistance in pathogens has posed considerable challenges to explore and examine the natural antimicrobials (NAMs). Due to the labile nature of NAMs, nano-delivery systems (NDS) are required to protect them from physiological degradation and allow controlled delivery to the targeted site of infection. In this study, corona modified NDS were developed using bovine serum albumin (BSA) on a chitosan core (CS) for sustained delivery of carvacrol (CAR), a natural antimicrobial agent, in the intestine. The optimal nano-formulations of the core (CS-NDS) and corona modified (BSA-CS-NDS) systems were fabricated with an average diameter of 52.4 ± 10.4 nm and 202.6 ± 6 nm, respectively. A shift in zeta-potential (ZP) from positive (+21 ± 3.6 mV) to negative values (-18 ± 2.6 mV) confirmed the electrostatic deposition of BSA corona on CS core. Under the influence of various simulated gastrointestinal conditions, BSA corona provided extra stability to NDS (ZP -38.5 mV), by ensuring delayed release and limited degradation in the gastric conditions. Mucoadhesive studies with quartz crystal microbalance with dissipation (QCM-D) revealed that BSA corona reduced the mucoadhesion of NDS at gastric pH, which enabled the effective delivery of CAR to the intestinal phase for successful eradication of Salmonella enterica.Proteins are biopolymers of highly varied structures taking part in almost all processes occurring in living cells. When nanoparticles (NPs) interact with proteins in biological environments, they are surrounded by a layer of biomolecules, mainly proteins adsorbing to the surfaces. This protein rich layer formed around NPs is called the “protein corona”. Consequential interactions between NPs and proteins are governed due to the characteristics of the corona. The features of NPs such as the size, surface chemistry, charge are the critical factors influencing the behavior of protein corona. Molecular properties and protein corona composition affect the cellular uptake of NPs. Understanding and analyzing protein corona formation in relation to protein-NP properties, and elucidating its biological implications play an important role in bio-related nano-research studies. Protein-NP interactions have been studied extensively for the purpose of investigating the potential use of NPs as carriers in drug delivery systems.

Facebook Pagelike Widget

Who’s Online

Profile picture of Talley Jimenez
Profile picture of Bullock Marker
Profile picture of Brodersen Jefferson
Profile picture of Leblanc Lorentzen
Profile picture of West Fournier
Profile picture of Zamora Raymond
Profile picture of Tan Bradley
Profile picture of Cain Roberson
Profile picture of Mose Tang
Profile picture of Monroe Greenberg
Profile picture of Lott Steele
Profile picture of Mikkelsen Rao