Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Womble Jonassen posted an update 11 hours, 16 minutes ago

    A cost-effective artificial humic substances (humic acid-modified biochar, HA-BCs) is fabricated by using conventional hydrothermal-assisted pyrolysis technique, and then is considered as a promising adsorbent material for removing mercury ions from aqueous solution. Artificial humic acid (A-HA), humic acid-modified biochar (HA-BCs) are analyzed by using SEM, EA, XRD, FTIR, XPS, and BET techniques. The removal efficiency of mercury ions was greater than 95% after reaching the adsorption equilibrium. Meanwhile, the adsorption kinetics coincided with the pseudo-second-order model and the isotherms for mercury ion sorption can be best interpreted using Freundlich isotherm model, with high regression coefficients (R2 = 0.967-0.990). Furthermore, the surface properties of HA-BCs before and after mercury adsorption are compared and evaluated, realizing that the mechanisms of removal of mercury ions on HA-BCs mainly include surface complexation with oxygen/nitrogen functional groups (-OH, -COOH and -NH2) and formation of precipitation with CO32- and OH-. learn more Furthermore, the used HA-BCs can be regenerated via 0.05 mol/L KI solution and the adsorption capacity of mercury still reaches at 32.57 mg/g after four cyclic utilization. Cadmium (Cd) is a known neurotoxicant and its relation with cognition has been well studied in children. However, evidence linking Cd and cognitive function among older individuals is limited. To evaluate the association between Cd exposure and cognitive function in older age, we conducted a cross-sectional study involving 375 older men aged 60-74 years (mean age 66.0 years) in Guangxi, China. Urinary Cd concentrations were measured. Cognitive function was assessed by the Chinese version of Mini-Mental State Examination (MMSE) and cognitive impairment was identified using education-specific cutoff points of MMSE scores. General linear regression and logistic regression models were applied to evaluate the associations of urinary Cd concentrations with MMSE scores and the risk of cognitive impairment, respectively. The median urinary Cd concentration of all participants was 1.58 μg/g creatinine. Urinary Cd levels were inversely associated with MMSE scores [β = -0.76; 95% confidence interval (CI) -1.28 to -0.23 for a 2-fold increase in urinary Cd]. A 2-fold increase in urinary Cd was associated with increased risk of cognitive impairment [adjusted odds ratio (OR) = 1.46; 95% CI 1.14 to 1.86]. When urinary Cd levels were analyzed as quartiles, higher urinary Cd levels were also significantly associated with increased risk of cognitive impairment in a dose-response manner (adjusted OR = 2.68; 95% CI 1.33 to 5.38 for the highest vs. lowest quartile; p for trend = 0.002). Our findings suggest that long-term exposure to Cd may have adverse consequences for older men’s cognitive function, but these results need further confirmation. Vermiremediation, which uses earthworms to remediate polluted soils, is an expanding technology in recently years. Surfactants have been widely used in bioremediation and other remediation technologies. However, the roles of surfactants in vermiremediation have been rarely studied. In this paper, an investigation of the effects of Tween-80 and rhamnolipid surfactant on the fluoranthene fraction distribution, vermiaccumulation, and removal during vermiremediation was conducted. Both Tween-80 and rhamnolipid improved the proportion of the desorbed fraction, bound residual fluoranthene, and correspondingly, proportions of the non-desorbed fraction were reduced. The vermiaccumulation of fluoranthene was significantly elevated by 35-64.1% and 34.5-44.2% by the Tween-80 and rhamnolipid, respectively. The vermiaccumulation of fluoranthene is positively correlated with the proportion of desorbed fraction of fluoranthene. Moreover, Tween-80 and rhamnolipid enhanced the removal of fluoranthene from contaminated soil during vermiremediation by 43.6-189.2% and 14.7-45.6%, respectively. The enhanced removal of fluoranthene was attributed to stimulated microbial degradation and increased vermiaccumulation resulting from the desorption ability of surfactants and earthworm activity. However, the total amount of fluoranthene that accumulated in earthworms was approximately 4-10% of the initial amount in the treatments, which suggested that microbial degradation rather than direct uptake contributed to the fluoranthene removal. The study suggests that the use of surfactants to enhance the efficiency of vermiremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soils might be feasible, and that surfactants-enhanced vermiremediation is an alternative strategies for treat PAHs contaminated soils. Atmospheric carbon dioxide (CO2) imbalance due to anthropogenic emissions has direct impact in climate change. Recent advancements in the mitigation of industrial CO2 emissions have been brought about by a paradigm shift from mere CO2 capture onto various adsorbents to CO2 conversion into high value products. The present study proposes a system which involves the conversion of CO2 into high purity, low moisture, compact and large CaCO3 solids through homogeneous granulation in a fluidized-bed reactor (FBR). In the present study, synthetic solutions of potassium carbonate (K2CO3) and calcium hydroxide (Ca(OH)2) were used as sources of carbonate and precipitant, respectively. The effects of the degree of supersaturation (S) as chemical loading and influx flow rate (QT) as hydraulic loading on CaCO3 granulation efficiency were investigated. In the study, S was varied from 10.2 to 10.8 and QT from 40 to 80 mL min-1 while the operating pH and calcium-is-to-carbonate molar ratio ([Ca2+]/[CO32-]) were set at 10 ± 0.2 and 1.50, respectively. Results showed that carbonate ions end product distribution had a highest carbonate granulation efficiency at [Carbonate]G of 95-96% using S of 10.6 and QT of 60 mL min-1. Characterization of the granules confirmed high purity calcium carbonate. Overall, the transformation of industrial CO2 emissions into a valuable solid product can be a significant move towards the mitigation of climate change from anthropogenic emissions.

Facebook Pagelike Widget

Who’s Online

There are no users currently online