-
Herrera Velazquez posted an update 4 days, 11 hours ago
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested. Environmental pollution and non-chemical stressors such as mental stress or traffic noise exposure are increasingly accepted as health risk factors with substantial contribution to chronic noncommunicable diseases (e.g. cardiovascular, metabolic and mental). Whereas the mechanisms of air pollution-mediated adverse health effects are well characterized, the mechanisms of traffic noise exposure are not completely understood, despite convincing clinical and epidemiological evidence for a significant contribution of environmental noise to overall mortality and disability. The initial mechanism of noise-induced cardiovascular, metabolic and mental disease is well defined by the “noise reaction model” and consists of neuronal activation involving the hypothalamic-pituitary-adrenal (HPA) axis as well as the sympathetic nervous system, followed by a classical stress response via cortisol and catecholamines. Stress pathways are initiated by noise-induced annoyance and sleep deprivation/fragmentation. This review highlights the down-stream pathophysiology of noise-induced mental stress, which is based on an induction of inflammation and oxidative stress. We highlight the sources of reactive oxygen species (ROS) involved and the known targets for noise-induced oxidative damage. Part of the review emphasizes noise-triggered uncoupling/dysregulation of endothelial and neuronal nitric oxide synthase (eNOS and nNOS) and its central role for vascular dysfunction. Poliomyelitis is a worldwide disease that has nearly been eradicated thanks to the Global Polio Eradication Initiative. Nevertheless, the disease is currently still endemic in three countries. In this paper, we incorporate the vaccination in a two age-class model of polio dynamics. Our main objective is to see whether mandatory vaccination policy is needed or if polio could be almost eradicated by a voluntary vaccination. We perform game theoretical analysis and compare the herd immunity vaccination levels with the Nash equilibrium vaccination levels. We show that the gap between two vaccination levels is too large. We conclude that the mandatory vaccination policy is therefore needed to achieve a complete eradication. Several neurological disorders occur due to hypoxic condition in brain arising from impairment of cerebral functionality, which can be controlled by neural stimulation driven vasoactive response mediated through biological response in astrocyte, a phenomenon known as neurovascular coupling. Brain can adjust with the problem of hypoxic condition by causing vasodilation with the help of this mechanism. To deduce the mechanism behind vasodilation of blood vessel caused by neuronal stimulus, current study articulates a mathematical model involving neuronal system feedforward inhibition network model (FFI) with two other functional components of neurovascular coupling, i.e. astrocyte and smooth muscle cell lining blood vessel. Rapamycin This study includes the neural inhibition network system where glutamatergic pyramidal neuron and GABAergic interneuron act antagonistically with each other. The proposed model successfully includes the implication of the inhibition system to design mathematical model for neurovascular coupling. Result of the proposed model shows that the increase in neuronal stimulus from 20 to 60 µA/cm2 has the ability to increase the vasodilatory activity of blood tissue vasculature. Oxygenation level and hemodynamic response due to input synaptic stimulation has been calculated by regional cerebral oxygenation level (rS02) and blood oxygen level dependent (BOLD) imaging signal which supports vasodilation of blood vessel with increase in synaptic input stimulus. In a retrospective study in the Nord Franche-Comté hospital conducted between March 1st and March 17th 2020, and compared to the review of Li et al., diarrhea was a main symptom in patients with COVID-19. Out of the 114 patients, 55 (48%) had diarrhea; it was the fifth most common symptom. In the group of patients with diarrhea, the median age was 56 years (±18) and 32 (58%) were female. Only 2 patients (3.6%) had a past history of inflammatory bowel disease. Fifty-six percent of patients (n=30/54) were hospitalised. Diarrhea appeared 4.5 days (±1.8) after the onset of the first other symptoms in COVID-19. Of the 55 patients with diarrhea, 29 (52.7%) had at least one simultaneous gastrointestinal (GI) symptom other than diarrhea. Twenty-five patients (45.5%) had nausea, 19 patients (34.5%) had abdominal pain and 9 (16.3%) had vomiting. Myalgia, sore throat, sneezing and the other GI symptoms were statistically more frequent in the group with diarrhea than in the group without diarrhea (P less then 0.05). The brain is the most sensitive organ to microwave radiation. However, few effective drugs are available for the treatment of microwave-induced brain injury due to the poor drug permeation into the brain. Here, intranasal tetrandrine (TET) temperature-sensitive in situ hydrogels (ISGs) were prepared with poloxamers 407 and 188. Its characteristics were evaluated, including rheological properties, drug release in vitro, and mucosal irritation. The pharmacodynamics and brain-targeting effects were also studied. The highly viscous ISGs remained in the nasal cavity for a long time with the sustained release of TET and no obvious ciliary toxicity. Intranasal temperature-sensitive TET ISGs markedly improved the spatial memory and spontaneous exploratory behavior induced by microwave with the Morris water maze (MWM) and the open field test (OFT) compared to the model. The ISGs alleviated the microwave-induced brain damage and inhibited the certain mRNA expressions of calcium channels in the brain. Intranasal temperature-sensitive TET ISGs was rapidly absorbed with a shorter Tmax (4.