-
Fagan Hildebrandt posted an update 2 days, 8 hours ago
This article deals with the phenomenon of aerodynamic interference occurring in the innovative hybrid system of multirotor aircraft propulsion. The approach to aerodynamics requires a determination of the impact of active sources of lift and thrust upon the aircraft aerodynamic characteristics. The hybrid propulsion unit, composed of a conventional multirotor source of thrust as well as lift in the form of the main rotor and a pusher, was equipped with an additional propeller drive unit. The tests were conducted in a continuous-flow low speed wind tunnel with an open measuring space, 1.5 m in diameter and 2.0 m long. Force testing made it possible to develop aerodynamic characteristics as well as defining aerodynamic characteristics and defining the field of speed for the considered design configurations. Our investigations enabled us to analyze the results in terms of a mutual impact of particular components of the research object and the area of impact of active elements present in a common flow.Nano-sized activated carbon was prepared from pomegranate peel (PG-AC) via NaOH chemical activation and was fully characterized using BET, FT-IR, FE-SEM, EDX, and XRD. The newly synthesized PG-AC was used for cefixime removal from the aqueous phase. The effective parameters on the adsorption process, including solution pH (2-11), salt effect (0-10%), adsorbent dosage (5-50 mg), contact time (5-300 min), and temperature (25-55 °C) were examined. The experimental adsorption equilibrium was in close agreement with the type IV isotherm model set by the International Union of Pure and Applied Chemistry (IUPAC). The adsorption process was evaluated with isotherm, kinetic, and thermodynamic models and it is were well fitted to the Freundlich isotherm (R2 = 0.992) and pseudo-second-order model (R2 = 0.999). The Langmuir isotherm provided a maximum adsorption capacity of 181.81 mg g-1 for cefixime uptake onto PG-AC after 60 min at pH 4. Hence, the isotherm, kinetic and thermodynamic models were indicated for the multilayer sorption followed by the exothermic physical adsorption mechanism.Prison could be considered a prolonged stressful situation that can trigger not only a dysregulation of sleep patterns but can also bring out psychiatric illness, such as anxiety and depression symptoms. Our study is aimed at exploring sleep quality and sleep habits in an Italian prison ward with three different security levels, and to attempt to clarify how anxiety state and the total time spent in prison can moderate insomnia complaints. There were 129 participants divided into three groups who enrolled in this study 50 were in the medium-security prison ward (Group 1), 58 were in the high-security prison ward (Group 2) and 21 were in the medium-security following a protocol of detention with reduced custodial measures (Group 3). All participants filled in a set of questionnaires that included the Beck Depression Inventory (BDI-2), the State-Trait Anxiety Inventory (STAI), the Pittsburgh Sleep Quality Index (PSQI), and the Insomnia Severity Index (ISI). Based on their responses, we observed that all participants showed poor sleep quality and insomnia, mild to moderate depressive symptoms that tended to a higher severity in Groups 1 and 3, and the presence of clinically significant anxiety symptoms, mainly in Groups 1 and 3. Our study shows that increased anxiety state-level and the presence of mood alteration corresponds to an increase in both poor sleep quality and, more specifically, insomnia complaints. Finally, we propose that TiP (total time in prison) could have an interesting and stabilizing paradox-function on anxiety state and insomnia.Ochratoxins, patulin, deoxynivalenol, and T-2 toxin are mycotoxins, and common contaminants in food and drinks. Human serum albumin (HSA) forms complexes with certain mycotoxins. Since HSA can affect the toxicokinetics of bound ligand molecules, the potential interactions of ochratoxin B (OTB), ochratoxin C (OTC), patulin, deoxynivalenol, and T-2 toxin with HSA were examined, employing spectroscopic (fluorescence, UV, and circular dichroism) and ultrafiltration techniques. Furthermore, the influence of albumin on the cytotoxicity of these xenobiotics was also evaluated in cell experiments. Fluorescence studies showed the formation of highly stable OTB-HSA and OTC-HSA complexes. Furthermore, fluorescence quenching and circular dichroism measurements suggest weak or no interaction of patulin, deoxynivalenol, and T-2 toxin with HSA. In ultrafiltration studies, OTB and OTC strongly displaced the Sudlow’s site I ligand warfarin, while other mycotoxins tested did not affect either the albumin binding of warfarin or naproxen. The presence of HSA significantly decreased or even abolished the OTB- and OTC-induced cytotoxicity in cell experiments; however, the toxic impacts of patulin, deoxynivalenol, and T-2 toxin were not affected by HSA. In summary, the complex formation of OTB and OTC with albumin is relevant, whereas the interactions of patulin, deoxynivalenol, and T-2 toxin with HSA may have low toxicological importance.Three-dimensional (3D) bioprinting is considered as a novel approach in biofabricating cell-laden constructs that could potentially be used to promote skin regeneration following injury. In this study, a novel crosslinked chitosan (CH)-genipin (GE) bioink laden with keratinocyte and human dermal fibroblast cells was developed and printed successfully using an extruder-based bioprinter. By altering the composition and degree of CH-GE crosslinking, bioink printability was further assessed and compared with a commercial bioink. Rheological analysis showed that the viscosity of the optimised bioink was in a suitable range that facilitated reproducible and reliable printing by applying low pressures ranging from 20-40 kPa. read more The application of low printing pressures proved vital for viability of cells loaded within the bioinks. Further characterisation using MTT assay showed that cells were still viable within the printed construct at 93% despite the crosslinking, processing and after subjecting to physiological conditions for seven days.