Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Thybo Sellers posted an update 6 days, 11 hours ago

    Matters arising from the tweets include a dearth of information on COVID-19 and optimism among others. The results provide insight into the intersection of SNSs and public health surveillance. Results show how helpful Twitter is to educate education in public health. Health organizations and the government may benefit from paying attention to both amusing and emotional contents from the Twitter community to formulate a viable policy for treatment and control.Developing a safe and effective antiviral treatment takes a decade, however, when it comes to the coronavirus disease (COVID-19), time is a sensitive matter to slow the spread of the pandemic. Screening approved antiviral drugs against COVID-19 would speed the process of finding therapeutic treatment. The current study examines commercially approved drugs to repurpose them against COVID-19 virus main protease using structure-based in-silico screening. check details The main protease of the coronavirus is essential in the viral replication and is involved in polyprotein cleavage and immune regulation, making it an effective target when developing the treatment. A Number of approved antiviral drugs were tested against COVID-19 virus using molecular docking analysis by calculating the free natural affinity of the binding ligand to the active site pocket and the catalytic residues without forcing the docking of the ligand to active site. COVID-19 virus protease solved structure (PDB ID 6LU7) is targeted by repurposed drugs. The molecular docking analysis results have shown that the binding of Remdesivir and Mycophenolic acid acyl glucuronide with the protein drug target has optimal binding features supporting that Remdesivir and Mycophenolic acid acyl glucuronide can be used as potential anti-viral treatment against COVID-19 disease.Tuberculosis is a treatable and curable bacterial disease caused by Mycobacterium tuberculosis that most often affects the lung. Since 2018, it has become the leading cause of death from infectious diseases. Tuberculosis is a public health problem in French Guiana. The majority of reported cases are diagnosed among people coming from neighboring Latin American countries. Since March 2020, French Guiana has been affected, like the rest of the world, by the new infectious disease COVID19 linked to the SARS-CoV-2 coronavirus. We here report a case of COVID19 and pulmonary tuberculosis coinfection. COVID19 pneumonia was the mode of discovery of the tuberculosis. In the present case, the tuberculosis appeared as parenchymal and endobronchial pseudotumoral lesion, which has been complicated by a bronchoesophageal fistula. The evolution of the parenchymal, endobronchial lesion and bronchoesophageal fistula was favorable after two months of anti-tuberculosis treatment.Novel coronavirus disease by SARS-CoV-2 virus (also known as COVID-19) has emerged as major health concern worldwide. While, there is no specific drugs for treating this infection till date, SARS-CoV-2 had spread to most countries around the globe. Nitric oxide (NO) gas serves as an important signaling molecule having vasodilatory effects as well as anti-microbial properties. Previous studies from the 2004 SARS-CoV infection demonstrated that NO may also help to reduce respiratory tract infection by inactivating viruses and inhibiting their replication cycle and is an effective supportive measure for treating infection in patients with pulmonary complications. NO gas inhalation is being suggested as potential therapy for managing severe acute respiratory distress syndrome in COVID-19 patients. In view of COVID-19 pandemic, several clinical trials are underway to examine the effects of NO inhalation on infected patients. Previously published reports on beneficial effects of endogenous NO and NO inhalation therapy were thoroughly searched to assess the potential of NO therapy for treating COVID-19 patients. Present report summarized the therapeutic importance of NO to reverse pulmonary hypertension, restore normal endothelial activity and produce anti-thrombotic effects. In addition to this, NO also reduces viral infection by inhibiting its replication and entry into the host cell. In absence of vaccine and effective treatment strategies, we suggest that NO inhalation therapy and NO releasing foods/compounds could be considered as an alternative measure to combat COVID-19 infection.

    An artificial intelligence (AI)-based model to predict COVID-19 likelihood from chest x-ray (CXR) findings can serve as an important adjunct to accelerate immediate clinical decision making and improve clinical decision making. Despite significant efforts, many limitations and biases exist in previously developed AI diagnostic models for COVID-19. Utilizing a large set of local and international CXR images, we developed an AI model with high performance on temporal and external validation.

    AI-based diagnostic tools may serve as an adjunct, but not replacement, for clinical decision support of COVID-19 diagnosis, which largely hinges on exposure history, signs, and symptoms. While AI-based tools have not yet reached full diagnostic potential in COVID-19, they may still offer valuable information to clinicians taken into consideration along with clinical signs and symptoms.

    AI-based diagnostic tools may serve as an adjunct, but not replacement, for clinical decision support of COVID-19 diagnosis, which largely hinges on exposure history, signs, and symptoms. While AI-based tools have not yet reached full diagnostic potential in COVID-19, they may still offer valuable information to clinicians taken into consideration along with clinical signs and symptoms.

    Liver injury in patients with coronavirus disease 2019 (COVID-19) is common and prognostic. Direct viral tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for angiotensin-converting enzyme 2 receptors in hepatocytes may be one of the mechanisms of liver injury. We aimed to determine the role of viral persistence of SARS-CoV-2, based on cycle threshold (Ct) value, in liver injury in COVID-19.

    This was a territory-wide retrospective cohort study of all public hospitals in Hong Kong. Laboratory-confirmed COVID-19 was identified. Serial liver biochemistries and Ct values of SARS-CoV-2 RNA were analyzed.

    We identified 7622 COVID-19 patients (mean age, 47 years; 48.2% male) diagnosed from March 24 to January 1, 2021, who had serial liver biochemistries and Ct values. A total of 1363 (17.9%) COVID-19 patients had alanine transferase (ALT)/aspartate aminotransferase (AST) elevations with 2 temporal patterns-early (within first 14 days of symptom onset) and late (>14 days from symptom onset).

Facebook Pagelike Widget

Who’s Online

Profile picture of Borregaard Temple
Profile picture of Begum Kolding
Profile picture of Olsson Pollard
Profile picture of Demant Short