-
Peters Gupta posted an update 3 days, 11 hours ago
Donor-acceptor Stenhouse adducts (DASAs) are visible-light-responsive photoswitches with a variety of emerging applications in photoresponsive materials. Their two-step modular synthesis, centered on the nucleophilic ring opening of an activated furan, makes DASAs readily accessible. However, the use of less reactive donors or acceptors renders the process slow and low yielding, which has limited their development. We demonstrate here that 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) promotes the ring-opening reaction and stabilizes the open isomer, allowing greatly reduced reaction times and increased yields for known derivatives. In addition, it provides access to previously unattainable DASA-based photoswitches and DASA-polymer conjugates. The role of HFIP and the photochromic properties of a set of new DASAs is probed using a combination of 1 H NMR and UV/Vis spectroscopy. The use of sterically hindered, electron-poor amines enabled the dark equilibrium to be decoupled from closed-isomer half-lives for the first time.Each language has its unique way to mark grammatical information such as gender, number and tense. For example, English marks number and tense/aspect information with morphological suffixes (e.g., -s or -ed). These morphological suffixes are crucial for language acquisition as they are the basic building blocks of syntax, encode relationships, and convey meaning. Previous research shows that English-learning infants recognize morphological suffixes attached to nonce words by the end of the first year, although even 8-month-olds recognize them when they are attached to known words. These results support an acquisition trajectory where discovery of meaning guides infants’ acquisition of morphological suffixes. In this paper, we re-evaluated English-learning infants’ knowledge of morphological suffixes in the first year of life. We found that 6-month-olds successfully segmented nonce words suffixed with -s, -ing, -ed and a pseudo-morpheme -sh. Additionally, they related nonce words suffixed with -s, but not -ing, -ed or a pseudo-morpheme -sh and stems. By 8-months, infants were also able to relate nonce words suffixed with -ing and stems. Our results show that infants demonstrate knowledge of morphological relatedness from the earliest stages of acquisition. They do so even in the absence of access to meaning. Based on these results, we argue for a developmental timeline where the acquisition of morphology is, at least, concurrent with the acquisition of phonology and meaning.
Myopathy is a common complication of any diabetes type, consisting in failure to preserve mass and muscular function. Oxidative stress has been considered one of the main causes for this condition. This study aimed to search if Nicorandil, a K
channel opener, could protect slow- and fast-twitch diabetic rat muscles from oxidative stress, and to unveil its possible mechanisms.
Diabetes was induced in male Wistar rats by applying intraperitoneally streptozotocin (STZ) at 100mg/kg doses. Nicorandil (3mg/kg/day) was administered along 4weeks. An insulin tolerance test and assessment of fasting blood glucose (FBG), TBARS, reduced (GSH), and disulfide (GSSG) glutathione levels, GSH/GSSG ratio, and mRNA expression of glutathione metabolism-related genes were performed at end of treatment in soleus and gastrocnemius muscles.
Nicorandil significantly reduced FBG levels and enhanced insulin tolerance in diabetic rats. In gastrocnemius and soleus muscles, Nicorandil attenuated the oxidative stress by decreasing lipid peroxidation (TBARS), increasing total glutathione and modulating GPX1-mRNA expression in both muscle’s types. Nicorandil also increased GSH and GSH/GSSG ratio and downregulated the GCLC- and GSR-mRNA in gastrocnemius, without significative effect on those enzymes’ mRNA expression in diabetic soleus muscle.
In diabetic rats, Nicorandil attenuates oxidative stress in slow- and fast-twitch skeletal muscles by improving the glutathione system functioning. The underlying mechanisms for the modulation of glutathione redox state and the transcriptional expression of glutathione metabolism-related genes seem to be fiber type-dependent.
In diabetic rats, Nicorandil attenuates oxidative stress in slow- and fast-twitch skeletal muscles by improving the glutathione system functioning. The underlying mechanisms for the modulation of glutathione redox state and the transcriptional expression of glutathione metabolism-related genes seem to be fiber type-dependent.ALPN-101 (ICOSL vIgD-Fc) is an Fc fusion protein of a human inducible T cell costimulatory ligand (ICOSL) variant immunoglobulin domain (vIgD) designed to inhibit the cluster of differentiation 28 (CD28) and inducible T cell costimulator (ICOS) pathways simultaneously. A first-in-human study evaluated the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of ALPN-101 in healthy adult subjects. ALPN-101 was generally well-tolerated with no evidence of cytokine release, clinically significant immunogenicity, or severe adverse events following single subcutaneous (SC) doses up to 3 mg/kg or single intravenous (IV) doses up to 10 mg/kg or up to 4 weekly IV doses of up to 1 mg/kg. ALPN-101 exhibited a dose-dependent increase in exposure with an estimated terminal half-life of 4.3-8.6 days and SC bioavailability of 60.6% at 3 mg/kg. Minimal to modest accumulation in exposure was observed with repeated IV dosing. ALPN-101 resulted in a dose-dependent increase in maximum target saturation and duration of high-level target saturation. Consistent with its mechanism of action, ALPN-101 inhibited cytokine production in whole blood stimulated by Staphylococcus aureus enterotoxin B ex vivo, as well as antibody responses to keyhole limpet hemocyanin immunization, reflecting immunomodulatory effects upon T cell and T-dependent B cell responses, respectively. selleck In conclusion, ALPN-101 was well-tolerated in healthy subjects with dose-dependent PK and PD consistent with the known biology of the CD28 and ICOS costimulatory pathways. Further clinical development of ALPN-101 in inflammatory and/or autoimmune diseases is therefore warranted.