Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Damsgaard Sloan posted an update 1 day, 5 hours ago

    We report here a fragment screen directed toward the c-MET kinase from which we discovered a series of inhibitors able to bind to a rare conformation of the protein in which the P-loop adopts a collapsed, or folded, arrangement. Preliminary SAR exploration led to an inhibitor (7) with nanomolar biochemical activity against c-MET and promising cell activity and kinase selectivity. These findings increase our structural understanding of the folded P-loop conformation of c-MET and provide a sound structural and chemical basis for further investigation of this underexplored yet potentially therapeutically exploitable conformational state.The discovery of PIPE-359, a brain-penetrant and selective antagonist of the muscarinic acetylcholine receptor subtype 1 is described. Starting from a literature-reported M1 antagonist, linker replacement and structure-activity relationship investigations of the eastern 1-(pyridinyl)piperazine led to the identification of a novel, potent, and selective antagonist with good MDCKII-MDR1 permeability. Continued semi-iterative positional scanning facilitated improvements in the metabolic and hERG profiles, which ultimately delivered PIPE-359. This advanced drug candidate exhibited robust efficacy in mouse myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis (EAE), a preclinical model for multiple sclerosis.The interleukin (IL)-23/T helper (Th)17 axis plays a critical role in autoimmune diseases, and there is an increasing number of biologic therapies that target IL-23 and IL-17. The transcription factor retinoic acid receptor-related orphan nuclear receptor γt (RORγt) is important for the activation and differentiation of Th17 cells and thus is an attractive pharmacologic target for the treatment of Th17-mediated diseases. A novel series of pyrazinone RORγ antagonists was discovered through hybridization of two distinct screening hits and scaffold hopping. The series offers attractive potency and selectivity in combination with favorable druglike properties, such as metabolic stability and aqueous solubility. Lead optimization identified a clinical candidate, compound (S)-11 (BI 730357), for the treatment of autoimmune diseases.(E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and its phosphonate analogs are potent phosphoantigens. HMBPP contains an (E)-allylic alcohol which interacts with the molecular target BTN3A1 giving an antigenic signal to activate Vγ9Vδ2 T cells. As probes of BTN3A1 function, we prepared prodrug derivatives of the HMBPP analog C-HMBP that lack the (E)-allylic alcohol or have modified it to an aldehyde or aldoxime and evaluated their biological activity. Removal of the alcohol completely abrogates phosphoantigenicity in these compounds while the aldoxime modification decreases potency relative to the (E)-allylic alcohol form. However, homoprenyl derivatives oxidized to an aldehyde stimulate Vγ9Vδ2 T cells at nanomolar concentrations. Molibresib Selection of phosphonate protecting groups (i.e., prodrug forms) impacts the potency of phosphoantigen aldehydes, with mixed aryl acyloxyalkyl forms exhibiting superior activity relative to aryl amidate forms. The activity correlates with the cellular reduction of the aldehyde to the alcohol form. Thus, the functionality on this ligand framework can be altered concurrently with phosphonate protection to promote cellular transformation to highly potent phosphoantigens.Phosphoinositide 3-kinases (PI3Ks) are a family of enzymes that control a wide variety of cellular functions such as cell growth, proliferation, differentiation, motility, survival, and intracellular trafficking. PI3Kγ plays a critical role in mediating leukocyte chemotaxis as well as mast cell degranulation, making it a potentially interesting target for autoimmune and inflammatory diseases. We previously disclosed a novel series of PI3Kγ inhibitors derived from a benzothiazole core. The truncation of the benzothiazole core led to the discovery of a structurally diverse alkynyl thiazole series which displayed high PI3Kγ potency and subtype selectivity. Further medicinal chemistry optimization of the alkynyl thiazole series led to identification of compounds such as 14 and 32, highly potent, subtype selective, and CNS penetrant PI3Kγ inhibitors. Compound 14 showed robust inhibition of PI3Kγ mediated neutrophil migration in vivo.Therapeutic reactivation of the γ-globin genes for fetal hemoglobin (HbF) production is an attractive strategy for treating β-thalassemia and sickle cell disease. It was reported that genetic knockdown of the histone lysine methyltransferase EHMT2/1 (G9a/GLP) is sufficient to induce HbF production. The aim of the present work was to acquire a G9a/GLP inhibitor that induces HbF production sufficiently. It was revealed that tetrahydroazepine has versatility as a side chain in various skeletons. We ultimately obtained a promising aminoindole derivative (DS79932728), a potent and orally bioavailable G9a/GLP inhibitor that was found to induce γ-globin production in a phlebotomized cynomolgus monkey model. This work could facilitate the development of effective new approaches for treating β-thalassemia and sickle cell disease.The five melanocortin receptors regulate numerous physiological functions. Although many ligands have been developed for the melanocortin-4 receptor (MC4R), the melanocortin-3 receptor (MC3R) has been less-well characterized, in part due to the lack of potent, selective tool compounds. Previously an Ac-His-Arg-(pI)DPhe-Tic-NH2 scaffold, inverting the Phe-Arg motif of the native melanocortin signal sequence, was identified to possess mMC3R over mMC4R selective agonist activity. In this study, a library of 12 compounds derived from this scaffold was synthesized and assayed at the mouse melanocortin receptors (MCRs), utilizing substitutions previously shown to increase mMC3R agonist potency and/or selectivity. One compound (8, Ac-Val-Gln-DBip-DTic-NH2) was identified as greater than 140-fold selective for the mMC3R over the mMC4R, possessed 70 nM potency at the mMC3R, and partially stimulated the mMC4R at 100 μM concentrations without antagonist activity. This pharmacological profile may be useful in developing new tool and therapeutic ligands that selective signal through the MC3R.

Facebook Pagelike Widget

Who’s Online

Profile picture of Balslev Tychsen
Profile picture of palermo2
Profile picture of Begum Hyllested
Profile picture of Comfort women